Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86532
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬劍清(Chien-Ching Ma)
dc.contributor.authorJun-Jie Heen
dc.contributor.author何俊頡zh_TW
dc.date.accessioned2023-03-20T00:01:30Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-12
dc.identifier.citation[1] Wu et al. (2019). Self-Polarization of PVDF Film Triggered by Hydrophilic Treatment for Pyroelectric Sensor with Ultra-Low Piezoelectric Noise. Nanoscale Res Lett, 14(1), 72. [2] Uchino, K. (2010). The Development of Piezoelectric Materials and the New Perspective. In Advanced Piezoelectric Materials (pp. 1-85). Sawston, UK: Woodhead. [3] Wainer, E., and Salomon, A. N. (1942). Titanium alloy manufacturing Co. Electr. Rep, 8(9), 1943. [4] Kawai, H. (1969). The Piezoelectricity of Poly (vinylidene Fluoride). Japanese Journal of Applied Physics, 8, 975-976. [5] Taleb, S., Badillo-Ávila, M. A., and Acuautla, M. (2021). Fabrication of Poly (Vinylidene Fluoride) Films by Ultrasonic Spray Coating; Uniformity and Piezoelectric Properties. Materials & Design, 212. [6] Nakamura, K. (2012). Piezoelectric Ceramics for Tansducers. In Ultrasonic transducers (pp. 82-83). Oxford, UK: Woodhead. [7] Fukada, E. (2000). History and Recent Progress in Piezoelectric Polymers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47, 1277-1290. [8] Murayama, N., and Obara, H. (1983). Piezoelectric Polymers and Their Applications. Japanese Journal of Applied Physics, 22(S3), 3. [9] Tuzzolino, A. J. (1996). Applications of PVDF Dust Sensor Systems in Space. Advances in Space Research, 17(12), 123-132. [10] Sun et al. (2019). Design and Testing of an Impact Sensor Using Two Crossed Polyvinylidene Fluoride (PVDF) Films. Transactions of the ASABE, 62(5), 1195-1205. [11] Kuhn, C., Angehrn, F., Sonnabend, O., and Voss, A. (2008). Impact of Extracorporeal Shock Waves on the Human Skin with Cellulite: A Case Study of an Unique Instance. Clinical Interventions in Aging, 3, 201-210. [12] Foster, F. S., Harasiewicz, K. A., and Sherar, M. D. (2000). A History of Medical and Biological Imaging with Polyvinylidene Fluoride (PVDF) Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(6), 1363-1371. [13] Shin, K.-Y., Lee, J. S., and Jang, J. (2016). Highly Sensitive, Wearable and Wireless Pressure Sensor Using Free-standing ZnO Nanoneedle/PVDF Hybrid Thin Film for Heart Rate Monitoring. Nano Energy, 22, 95-104. [14] Trung, T. Q., Ramasundaram, S., Hong, S. W., and Lee, N.-E. (2014). Flexible and Transparent Nanocomposite of Reduced Graphene Oxide and P(VDF-TrFE) Copolymer for High Thermal Responsivity in a Field-Effect Transistor. Advanced Functional Materials, 24(22), 3438-3445. [15] Hoche, S., Hussein, M. A., & Becker, T. (2015). Density, Ultrasound Velocity, Acoustic Impedance, Reflection and Absorption Coefficient Determination of Liquids via Multiple Reflection Method. Ultrasonics, 57, 65-71. [16] Fay, B., Ludwig, G., Lankjaer, C., and Lewin, P. A. (1994). Frequency Response of PVDF Needle-type Hydrophones. Ultrasound in Medicine & Biology, 20(4), 361-366. [17] Granz, B. (1989). PVDF Hydrophone for the Measurement of Shock Waves (Lithotripsy). IEEE Transactions on Electrical Insulation, 24(3), 499-502. [18] Park et al. (2018). PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants. Trends in Hearing, 22, 1-11. [19] Xu, J., Dapino, M. J., Gallego-Perez, D., and Hansford, D. (2009). Microphone Based on Polyvinylidene Fluoride (PVDF) Micro-pillars and Patterned Electrodes. Sensors and Actuators A: Physical, 153(1), 24-32. [20] Abdolvand, R., Fatemi, H., and Moradian, S. (2017). Quality Factor and Coupling in Piezoelectric MEMS Resonators. In Piezoelectric MEMS Resonators (pp. 133-152). Cham: Springer International. [21] Inman, D. J. and Singh, R. C. (1994). Engineering vibration (pp. 435-491). Englewood Cliffs, NJ: Prentice Hall. [22] Yanai, K., Tomikawa, Y., Sakurai, K., and Kusakabe, C. (1997). Q-Value Control of Piezoelectric Vibrator Using Operational Amplifier Circuit. Japanese Journal of Applied Physics, 36(Part 1, No. 5B), 3034-3036. [23] Mezheritsky, A. Q-Factor Spectrum of a Piezoceramic Resonator and Method for Piezoelectric Loss Factor Determination. (1525-8955 (Electronic)). [24] Zhang, S., Xia, R., Lebrun, L., Anderson, D., and Shrout, T. R. (2005). Piezoelectric Materials for High Power, High Temperature Applications. Materials Letters, 59(27), 3471-3475. [25] Sirohi, J., & Chopra, I. (2016). Fundamental Understanding of Piezoelectric Strain Sensors. Journal of Intelligent Material Systems and Structures, 11(4), 246-257. [26] Dung, C. V., and Sasaki, E. (2016). Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading. Sensors (Basel), 16(5). [27] Ma, C. C., Huang, Y. H., and Pan, S. Y. (2012). Investigation of the Transient Behavior of a Cantilever Beam Using PVDF Sensors. Sensors, 12(2), 2088-2117. [28] Ma, C. C., Chuang, K. C., and Pan, S. Y. (2011). Polyvinylidene Fluoride Film Sensors in Collocated Feedback Structural Control: Application for Suppressing Impact-induced Disturbances. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(12), 2539-2554. [29] Meng, Y., & Yi, W. (2011). Application of a PVDF-based Stress Gauge in Determining Dynamic Stress–strain Curves of Concrete under Impact Testing. Smart Materials and Structures, 20(6), 065004. [30] Wang, Y. R., Zheng, J. M., Ren, G. Y., Zhang, P. H., and Xu, C. (2011). A Flexible Piezoelectric Force Sensor Based on PVDF Fabrics. Smart Materials and Structures, 20(4), 045009. [31] Sahaya Grinspan, A., & Gnanamoorthy, R. (2010). Impact Force of Low Velocity Liquid Droplets Measured Using Piezoelectric PVDF Film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356(1-3), 162-168. [32] Tang, E. L., Wang, L., and Han, Y. F. (2019). Space Debris Positioning Based on Two-dimensional PVDF Piezoelectric Film Sensor. Advances in Space Research, 63(8), 2410-2421. [33] Odon, A. (2005). Voltage Response of Pyroelectric PVDF Detector to Pulse Source of Optical Radiation. Measurement Science Review, 5(3), 55-58. [34] Hertz, H. (1882). Ueber Die Berührung Fester Elastischer Körper. Journal Für Die Reine und Angewandte Mathematik, 92. [35] Johnson, K. L. (1982). One Hundred Years of Hertz Contact. Proceedings of the Institution of Mechanical Engineers, 196(1), 363-378. [36] Hunter, S. C. (1957). Energy Absorbed by Elastic Waves During Impact. Journal of the Mechanics and Physics of Solids, 5(3), 162-171. [37] 張鈞凱(2011)。位移與應變暫態波傳之實驗量測、理論分析以及數值計算。國立臺灣大學機械工程學研究所碩士論文,台北市。 [38] 劉泓嶔(2011)。PVDF感測器應用於結構系統之動態量測能力探討。國立臺灣大學機械工程學研究所碩士論文,台北市。 [39] 王俊耀(2012)。布拉格光纖光柵感測器應用於三維結構物邊點之暫態應變量測。國立臺灣大學機械工程學研究所碩士論文,台北市。 [40] 黃康哲(2015)。聚偏二氟乙烯薄膜與布拉格光纖光柵感測器之動態量測技術研發與應用。國立臺灣大學機械工程學研究所博士論文,台北市。 [41] 李冠德(2016)。以布拉格光纖光柵感測器量測與分析固液耦合結構物的動態特性及暫態波傳問題。國立臺灣大學機械工程學研究所碩士論文,台北市。 [42] 吳亦莊(2009)。理論解析與實驗量測壓電平板的面外振動及特性探討。國立臺灣大學機械工程學研究所碩士論文,台北市。 [43] 吳亦莊(2018)。應用Mindlin板理論與高階剪切形變理論解析固體耦合的振動特性。國立臺灣大學機械工程學研究所博士論文,台北市。 [44] 廖展誼(2018)。矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測。國立臺灣大學機械工程學研究所博士論文,台北市。 [45] 陳冠瑋(2021)。矩形平板部分浸泡於流場中的振動特性、暫態波傳與反算問題之理論解析、數值計算與實驗量測。國立臺灣大學機械工程學研究所博士論文,台北市。 [46] 李霽儒(2021)。提升數位影像相關法效能並應用於跨尺度動態問題量測與機械手臂之系統整合。國立臺灣大學機械工程學研究所碩士論文,台北市。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86532-
dc.description.abstractPVDF薄膜具有延展性佳、易裁切、低密度、質量小以及Q值小等優點,使PVDF薄膜非常適合作為感測器,在許多領域中都有相關應用,例如水下流速計、微型麥克風、生醫科技的心跳監測器等。透過本實驗室開發的PVDF薄膜量測技術,可量測結構的面內應變和波源歷時,本文主要使用上述的PVDF薄膜量測能力,針對矩形薄板、不同厚度的厚板以及固液耦合的動態波傳問題作深入探討。 近年來本實驗室開發的PVDF薄膜量測技術已有很好的成果,在薄板的動態應變量測和波源歷時的擷取皆非常成熟,但對於面內應變訊號尚未完成定量,本文首先探討PVDF薄膜於懸臂板和CCCF平板上的面內應變量測,以平板理論解析解進行分析比對實驗訊號的波形和振幅之正確性,再進行時頻分析獲得平板各模態的阻尼比,比較長時間時理論訊號考慮阻尼效應的結果,是否和實驗訊號的振幅衰減情況相符。基於PVDF薄膜在薄板結構上的應變訊號量測之正確性,將量測物件擴展至CCCF水箱和薄殼腔體,以相同實驗方式量測不同水深對CCCF平板的影響。探討PVDF薄膜和光纖位移計量測平板的共振頻率、暫態訊號及阻尼比對水深的變化,顯示PVDF薄膜於固液耦合的動態波傳問題之量測能力依然很好。 本文亦探討PVDF薄膜應用於全自由邊界的厚板之暫態面內應變和波源歷時量測,藉由不同寬厚比的厚板之鋼珠撞擊實驗,將實驗應變訊號與有限元素法的模擬結果進行比較,歸納PVDF薄膜於厚板的波源歷時擷取方式,並確認其量測結果的正確性。最後探討鋼珠直接撞擊厚板的接觸時間和赫茲接觸理論的差異,將赫茲理論計算的波源歷時帶入有限元素法中,得到量測點的暫態面內應變模擬結果,與實驗訊號比對波形和振幅量值,進而整理、歸納不同厚度的實驗比較結果,驗證赫茲理論中波源歷時之波形和接觸時間能夠應用於厚板實驗,並修正且建立其波源歷時的模型。zh_TW
dc.description.abstractThere are many advantages of the PVDF films, such as flexibility, no limitations of size or shape, low density and mass, small Q value, which makes PVDF film very suitable as a sensor. PVDF films has applications in many fields, such as flow meter, pressure gage, microphone, heartbeat rate monitor. The time history of in-plane strain and impact history of the structure could be measured by the PVDF films. In this thesis, the PVDF film sensor has been used to measure the dynamic behaviors of rectangular thin plates, thick plates with different thicknesses and fluid-plate interaction system. Recently, the above mentioned measurement methods of the PVDF film have a good technology maturity. However, the quantitative measurement of the in-plane strain of the plates has not been completed yet. Firstly, this thesis obtains the transient in-plane strain of the cantilever and CCCF plate using PVDF films. According the theoretical analysis of the rectangular plate, the experimental signals are consistent with the transient results. The damping ratio for each resonant frequency is determined from the short-time Fourier analysis. The damping effect is considered in theoretic transient analysis for the long-time responses, and compared with the experimental signals. Based on the excellent result of the strain from PVDF film, the investigation is extended to the CCCF and finite water tank. The influence of different water depth on the CCCF plate is discussed base on the same experimental arrangement. From the results of the resonant frequency, transient signal, and damping ratio of PVDF and fotonic sensor, it is noted that the performance of PVDF films in fluid-structure interaction problem is also quite well. This thesis also performs the transient in-plane strain and impact history measurement of the thick plates with free boundary condition. Through the impact experiments of thick plate with different thickness, the comparison between experiment and FEM results are provided. We analyze the impact history from the PVDF film, and provide useful results. Finally, the contact time of the steel ball directly impacting the thick plates with different thickness are compared with the Hertz contact theory. The impact histories from Hertz theory are used in FEM to determine the transient in-plane strain results. The comparisons between the theoretical results and experimental strain signals are used to establish an impact formulation for the thick plate.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:01:30Z (GMT). No. of bitstreams: 1
U0001-1208202214222000.pdf: 36045330 bytes, checksum: 2f7ee8c7041d11c23437faa7daf9f90a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 I Abstract III 目錄 V 表目錄 XI 圖目錄 XV 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 內容簡介 6 第二章 實驗儀器與量測原理介紹 9 2.1 壓電薄膜量測系統 9 2.1.1 聚偏二氟乙烯(PVDF)薄膜感測器 9 2.1.2 面內應變感測原理 10 2.1.3 波源歷時量測原理 13 2.2 數位影像相關法 14 2.2.1 時間參數 15 2.2.2 空間參數 15 2.2.3 樣板子集合與半窗格 15 2.2.4 搜尋子集合與搜尋窗格 16 2.2.5 相關係數極值搜尋法 16 2.2.6 二維數位影像相關法 17 2.2.7 高速攝影機 18 2.3 光纖位移計 18 2.4 示波器 19 2.5 超音波探傷儀 19 第三章 PVDF與FS於薄板動態應變及位移實驗量測與理論分析 35 3.1矩形平板之穩態理論解析 35 3.1.1 等向性材料平板統御方程式 35 3.1.2 懸臂平板邊界條件與穩態解析 37 3.1.3 CCCF平板邊界條件與穩態解析 39 3.1.4 平板暫態波傳解析解 41 3.2懸臂平板實驗量測 42 3.2.1 實驗架設與儀器設定 42 3.2.2 波源歷時量測結果 43 3.2.3 實驗量測結果—頻率域 44 3.2.4 實驗量測結果—時間域 44 3.2.5 小結 49 3.3 CCCF平板實驗量測 50 3.3.1 實驗架設與儀器設定 50 3.3.2 波源歷時量測結果 51 3.3.3 實驗面內應變訊號—頻率域 51 3.3.4 實驗面內應變訊號—時間域 52 3.4結論 55 第四章 PVDF應用於CCCF平板與薄殼腔體流固耦合之暫態波傳量測 99 4.1部分浸泡矩形平板之穩態理論解析 99 4.1.1 流體運動方程式 99 4.1.2 平板統御方程式及邊界條件 100 4.2 CCCF平板部分浸泡於15mm水深 103 4.2.1 實驗架設與儀器設定 103 4.2.2 波源歷時量測結果 104 4.2.3 實驗量測結果—頻率域 104 4.2.4 實驗量測結果—時間域 104 4.3 CCCF平板部分浸泡於30mm水深 107 4.3.1 波源歷時量測結果 107 4.3.2 實驗量測結果—頻率域 107 4.3.3 實驗量測結果—時間域 108 4.4 CCCF平板部分浸泡於45mm水深 109 4.4.1 波源歷時量測結果 109 4.4.2 實驗量測結果—頻率域 109 4.4.3 實驗量測結果—時間域 110 4.5 CCCF平板部分浸泡於60mm水深 111 4.5.1 波源歷時測結果 111 4.5.2 實驗量測結果—頻率域 111 4.5.3 實驗量測結果—時間域 112 4.5.4 小結 113 4.6 PVDF薄膜應用於水下壓力感測 114 4.6.1 45mm水深之CCCF水箱 115 4.6.2 60mm水深之CCCF水箱 116 4.6.3 65mm水深之薄殼腔體 117 4.6.4 小結 118 第五章 PVDF於不同厚度自由邊界固體的波源歷時與動態面內應變量測 193 5.1電流法與接觸時間量測 193 5.1.1 電流法 193 5.1.2 實驗方法與儀器設定 193 5.1.3 實驗結果分析 194 5.2高階剪切形變理論解析 195 5.2.1 平衡方程式與邊界條件 195 5.2.2 無因次化之運動方程式與邊界條件 199 5.3 75.4mm厚全自由固體 201 5.3.1 實驗架設與儀器設定 201 5.3.2 2D DIC與有限元素法設定與計算 202 5.3.3 實驗結果與分析 203 5.3.4 小結 205 5.4 10mm厚全自由平板 206 5.4.1 平板材料參數分析 206 5.4.2 實驗架設與儀器設定 207 5.4.3 有限元素法軟體設定 207 5.4.4 波源歷時量測結果 208 5.4.5 實驗面內應變訊號—頻率域 209 5.4.6 實驗面內應變訊號—時間域 210 5.4.7 小結 212 5.5 6mm厚全自由平板 213 5.5.1 實驗架設與儀器設定 214 5.5.2 波源歷時量測結果 214 5.5.3 實驗面內應變訊號—頻率域 215 5.5.4 實驗面內應變訊號—時間域 216 5.5.5 小結 219 5.6 3mm厚全自由平板 219 5.6.1 實驗架設與儀器設定 219 5.6.2 波源歷時量測結果 220 5.6.3 實驗面內應變訊號—頻率域 221 5.6.4 實驗面內應變訊號—時間域 222 5.6.5 小結 224 5.7結論 224 第六章 赫茲接觸理論應用於不同厚度之固體及薄板 325 6.1赫茲接觸理論 325 6.2赫茲理論接觸時間 327 6.2.1 電流法實驗架設 327 6.2.2 實驗結果與分析 327 6.3 75.4mm厚全自由固體 328 6.3.1 實驗架設與儀器設定 328 6.3.2 實驗量測結果 329 6.4 10mm厚全自由平板 330 6.4.1 實驗架設與儀器設定 330 6.4.2 實驗結果與討論 330 6.5 6mm厚全自由平板 331 6.5.1 實驗架設與儀器設定 331 6.5.2 實驗結果與討論 332 6.6 3mm厚全自由平板 332 6.6.1 實驗架設與儀器設定 332 6.6.2 實驗結果與討論 333 6.6.3 小結 334 6.7 懸臂薄板 334 6.7.1 實驗架設與儀器設定 334 6.7.2 實驗結果與討論 335 6.8 結論 337 第七章 結論與未來展望 385 7.1 結論 385 7.2 未來展望 389 附錄A: PVDF壓電薄膜 391 附錄B: 電荷放大器 392 參考文獻 393
dc.language.isozh-TW
dc.subject面內應變量測zh_TW
dc.subject結構動態響應量測zh_TW
dc.subjectPVDF薄膜感測器zh_TW
dc.subjectPVDFzh_TW
dc.subject結構動態響應量測zh_TW
dc.subject面內應變量測zh_TW
dc.subject波源歷時zh_TW
dc.subject有限元素法zh_TW
dc.subjectPVDFzh_TW
dc.subject赫茲接觸理論zh_TW
dc.subject赫茲接觸理論zh_TW
dc.subject有限元素法zh_TW
dc.subjectPVDF薄膜感測器zh_TW
dc.subject波源歷時zh_TW
dc.subjectIn-plane strain measurementen
dc.subjectPVDFen
dc.subjectPVDF film sensoren
dc.subjectDynamic behavior measurementen
dc.subjectImpact historyen
dc.subjectFinite element methoden
dc.subjectHertz contact theoryen
dc.subjectPVDFen
dc.subjectPVDF film sensoren
dc.subjectDynamic behavior measurementen
dc.subjectIn-plane strain measurementen
dc.subjectImpact historyen
dc.subjectFinite element methoden
dc.subjectHertz contact theoryen
dc.titlePVDF薄膜應用於矩形平板結構的動態響應與波源歷時之數值分析與實驗量測zh_TW
dc.titleNumerical Calculation and Experiment Measurement of Dynamic Response and Impact Source History from PVDF Films for Rectangular Platesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊哲化(Che-Hua Yang),尹慶中(Ching-Chung Yin),莊國志(Kuo-chih Chuang),黃育熙(Yu-Hsi Huang)
dc.subject.keywordPVDF,PVDF薄膜感測器,結構動態響應量測,面內應變量測,波源歷時,有限元素法,赫茲接觸理論,zh_TW
dc.subject.keywordPVDF,PVDF film sensor,Dynamic behavior measurement,In-plane strain measurement,Impact history,Finite element method,Hertz contact theory,en
dc.relation.page397
dc.identifier.doi10.6342/NTU202202342
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2022-08-18-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-1208202214222000.pdf35.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved