請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86527完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林祥泰(Shiang-Tai Lin) | |
| dc.contributor.author | Shao-Wei Lu | en |
| dc.contributor.author | 呂紹維 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:01:10Z | - |
| dc.date.copyright | 2022-08-24 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-12 | |
| dc.identifier.citation | Joback, K.G. and R.C. Reid, ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS. Chemical Engineering Communications, 1987. 57(1-6): p. 233-243. Marrero, J. and R. Gani, Group-contribution based estimation of pure component properties. Fluid Phase Equilibria, 2001. 183: p. 183-208. Le, T., et al., Quantitative Structure-Property Relationship Modeling of Diverse Materials Properties. Chemical Reviews, 2012. 112(5): p. 2889-2919. Moriwaki, H., et al., Mordred: a molecular descriptor calculator. Journal of Cheminformatics, 2018. 10. Roy, K., et al., Comparative Studies on Some Metrics for External Validation of QSPR Models. Journal of Chemical Information and Modeling, 2012. 52(2): p. 396-408. Goh, G.B., N.O. Hodas, and A. Vishnu, Deep learning for computational chemistry. Journal of Computational Chemistry, 2017. 38(16): p. 1291-1307. Goh, G.B., et al. Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models. 2017. arXiv:1706.06689. Lo, Y.C., et al., Machine learning in chemoinformatics and drug discovery. Drug Discovery Today, 2018. 23(8): p. 1538-1546. Pilania, G., et al., Accelerating materials property predictions using machine learning. Scientific Reports, 2013. 3. Ramprasad, R., et al., Machine learning in materials informatics: recent applications and prospects. Npj Computational Materials, 2017. 3. Wu, Z.Q., et al., MoleculeNet: a benchmark for molecular machine learning. Chemical Science, 2018. 9(2): p. 513-530. Austin, N.D., N.V. Sahinidis, and D.W. Trahan, Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research & Design, 2016. 116: p. 2-26. Hsu, H.-H., C.-H. Huang, and S.-T. Lin, New Data Structure for Computational Molecular Design with Atomic or Fragment Resolution. Journal of Chemical Information and Modeling, 2019. 59(9): p. 3703-3713. Pegg, S.C.H., J.J. Haresco, and I.D. Kuntz, A genetic algorithm for structure-based de novo design. Journal of Computer-Aided Molecular Design, 2001. 15(10): p. 911-933. Elton, D.C., et al., Deep learning for molecular design-a review of the state of the art. Molecular Systems Design & Engineering, 2019. 4(4): p. 828-849. Liu, Y., et al., Materials discovery and design using machine learning. Journal of Materiomics, 2017. 3(3): p. 159-177. Oliveira, A.F., J.L.F. Da Silva, and M.G. Quiles, Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, 2022. 62(4): p. 817-828. Griffiths, R.R. and J.M. Hernandez-Lobato, Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chemical Science, 2020. 11(2): p. 577-586. Lim, J., et al., Molecular generative model based on conditional variational autoencoder for de novo molecular design. Journal of Cheminformatics, 2018. 10. Abbasi, M., et al., Designing optimized drug candidates with Generative Adversarial Network. Journal of Cheminformatics, 2022. 14(1). Lee, Y.J., H. Kahng, and S.B. Kim, Generative Adversarial Networks for De Novo Molecular Design. Molecular Informatics, 2021. 40(10). Prykhodko, O., et al., A de novo molecular generation method using latent vector based generative adversarial network. Journal of Cheminformatics, 2019. 11(1). Cambria, E. and B. White, Jumping NLP Curves: A Review of Natural Language Processing Research. Ieee Computational Intelligence Magazine, 2014. 9(2): p. 48-57. Vaswani, A., et al. Attention Is All You Need. 2017. arXiv:1706.03762. Wang, A., et al. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. 2018. Brussels, Belgium: Association for Computational Linguistics. Devlin, J., et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018. arXiv:1810.04805. Brown, T.B., et al. Language Models are Few-Shot Learners. 2020. arXiv:2005.14165. Radford, A. and K. Narasimhan. Improving Language Understanding by Generative Pre-Training. 2018. Radford, A., et al., Language Models are Unsupervised Multitask Learners. 2018. Weininger, D., SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 1988. 28(1): p. 31-36. Karpov, P., G. Godin, and I.V. Tetko. A Transformer Model for Retrosynthesis. in ICANN. 2019. Tetko, I.V., et al., State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nature Communications, 2020. 11(1). Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-+. Cortes, C. and V. Vapnik, SUPPORT-VECTOR NETWORKS. Machine Learning, 1995. 20(3): p. 273-297. Hartigan, J.A. and M.A. Wong, A k-means clustering algorithm. JSTOR: Applied Statistics, 1979. 28(1): p. 100--108. Jolliffe, I.T. and J. Cadima, Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2016. 374(2065). Watkins, C. and P. Dayan, Q-LEARNING. Machine Learning, 1992. 8(3-4): p. 279-292. Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks, 2015. 61: p. 85-117. Wang, P., E. Fan, and P. Wang, Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 2021. 141: p. 61-67. Shinde, P.P. and S. Shah. A Review of Machine Learning and Deep Learning Applications. in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). 2018. Shrestha, A. and A. Mahmood, Review of Deep Learning Algorithms and Architectures. Ieee Access, 2019. 7: p. 53040-53065. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS. Nature, 1986. 323(6088): p. 533-536. Alzubaidi, L., et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 2021. 8(1). Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks. Communications of the Acm, 2017. 60(6): p. 84-90. Lipton, Z.C., J. Berkowitz, and C. Elkan A Critical Review of Recurrent Neural Networks for Sequence Learning. 2015. arXiv:1506.00019. Heaton, J. An Empirical Analysis of Feature Engineering for Predictive Modeling. 2017. arXiv:1701.07852. Kuhn, M. and K. Johnson, Feature engineering and selection: A practical approach for predictive models. 2019: CRC Press. Li, J.D., et al., Feature Selection: A Data Perspective. Acm Computing Surveys, 2018. 50(6). Gilpin, L.H., et al. Explaining Explanations: An Overview of Interpretability of Machine Learning. in 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). 2018. Gunning, D., et al., XAI-Explainable artificial intelligence. Science Robotics, 2019. 4(37). Samek, W., T. Wiegand, and K.-R. Müller Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. 2017. arXiv:1708.08296. Iooss, B. and P. Lemaître, A Review on Global Sensitivity Analysis Methods, in Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, G. Dellino and C. Meloni, Editors. 2015, Springer US: Boston, MA. p. 101-122. Shu, H. and H. Zhu Sensitivity Analysis of Deep Neural Networks. 2019. arXiv:1901.07152. Kingma, D.P. and M. Welling Auto-Encoding Variational Bayes. 2013. arXiv:1312.6114. Kingma, D.P. and M. Welling An Introduction to Variational Autoencoders. 2019. arXiv:1906.02691. Baldi, P., Autoencoders, Unsupervised Learning, and Deep Architectures, in Proceedings of ICML Workshop on Unsupervised and Transfer Learning, G. Isabelle, et al., Editors. 2012, PMLR: Proceedings of Machine Learning Research. p. 37--49. Almeida, F. and G. Xexéo Word Embeddings: A Survey. 2019. arXiv:1901.09069. Cerda, P., G. Varoquaux, and B. Kégl Similarity encoding for learning with dirty categorical variables. 2018. arXiv:1806.00979. Hancock, J.T. and T.M. Khoshgoftaar, Survey on categorical data for neural networks. Journal of Big Data, 2020. 7(1). Dollar, O., et al., Attention-based generative models for de novo molecular design. Chemical Science, 2021. 12(24): p. 8362-8372. Claesen, M. and B. De Moor Hyperparameter Search in Machine Learning. 2015. arXiv:1502.02127. Probst, P., A.L. Boulesteix, and B. Bischl, Tunability: Importance of Hyperparameters of Machine Learning Algorithms. Journal of Machine Learning Research, 2019. 20. Yu, T. and H. Zhu Hyper-Parameter Optimization: A Review of Algorithms and Applications. 2020. arXiv:2003.05689. Bergstra, J. and Y. Bengio, Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research, 2012. 13: p. 281-305. Liashchynskyi, P. and P. Liashchynskyi Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. 2019. arXiv:1912.06059. Feurer, M., J.T. Springenberg, and F. Hutter. Initializing Bayesian Hyperparameter Optimization via Meta-Learning. in AAAI. 2015. Dietterich, T.G., Ensemble methods in machine learning, in Multiple Classifier Systems, J. Kittler and F. Roli, Editors. 2000. p. 1-15. Polykovskiy, D., et al. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. 2018. arXiv:1811.12823. Gao, W.H. and C.W. Coley, The Synthesizability of Molecules Proposed by Generative Models. Journal of Chemical Information and Modeling, 2020. 60(12): p. 5714-5723. Thakkar, A., et al., Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chemical Science, 2021. 12(9): p. 3339-3349. Ertl, P. and A. Schuffenhauer, Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 2009. 1. Irwin, J.J. and B.K. Shoichet, ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 2005. 45(1): p. 177-182. Landrum, G., RDKit: Open-Source Cheminformatics Software. 2016. Bajusz, D., A. Rácz, and K. Héberger, Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of Cheminformatics, 2015. 7(1): p. 20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86527 | - |
| dc.description.abstract | 本研究探索將計算化學(computational chemistry)結合機器學習(machine learning)技術的可能性。在特用化學品的開發以及藥物設計的領域,描述化學結構以及化學性質間的關係一直扮演著很關鍵的角色。傳統上可以在實驗室內透過進行大量實驗的試誤法(trial and error)來達成此目的,但這個方法的效率不彰,且需要大量的時間、人力、金錢等資源成本。因此在這個研究中,我們嘗試利用電腦計算模擬來幫助我們。我們先使用與自然語言(natural language)相近的SMILES(simplified molecular input line entry specification)表示法,讓電腦能夠了解分子的結構,接著利用目前最新穎的自然語言處理模型,也就是Transformer模型,並結合變分自動編碼器(variational autoencoder)的概念來達成性質預測以及分子設計的任務。 在這個方法背後的假設是我們可以利用一個想像出來的高維度向量空間,來逼近實際上複雜的化學空間。因此我們利用模型可應用的三種場景來驗證這個假設。這些使用情境分別是隨機的生成大量新分子,預測感興趣分子的性質,以及設計出具有目標性質的分子。首先,我們發現模型針對訓練分子的重建精確度(reconstruction accuracy)以及設計出新分子的有效性(validity)存在著權衡的關係(trade-off)。接著,我們發現除了訓練資料集內的分子外,模型同樣可以預測新產生分子的性質,這代表著模型的泛化(generalization)能力。最後,我們成功同時利用模型的生成能力以及預測性質的能力,來設計出具有目標性質的分子。總而言之,我們展示了計算化學以及機器學習技術之間的結合,可以同時在性質預測以及分子設計這兩個任務上達到優秀的表現。 | zh_TW |
| dc.description.abstract | This work explores the possibility at the nexus of computational chemistry and machine learning. Describing the relationship between the chemical structure and chemical property has always played an important role in drug design and specialty chemicals development. The most intuitive way is the trial and error approach in the laboratory, but they are inefficient and resource-intensive. Therefore, this work adopts computer-aided approaches. We use language-like SMILES notations to represent the molecular structure on the computer, then leverage the state-of-the-art natural language processing model, that is, Transformer, and integrate the concept of the variational autoencoder to perform property prediction and molecular design. The hypothesis underpinning this work is that we can use a high-dimensional vector space to approximate the complicated real chemical space. Therefore, we verify this hypothesis from three application scenarios: randomly generating a large number of new molecules, predicting the property of molecules of interest, and designing new molecules with the targeted property. First, we prove there is a trade-off between the reconstruction accuracy of the training data and the validity of the newly generated molecules. Besides, the model is not only limited to the training data but can also predict the property of the newly generated molecules, which represents the generalization ability of the model. Finally, we successfully utilize the generative ability and property prediction capability of this model to design molecules with the targeted property. To sum up, we demonstrate that the convergence between computational chemistry and machine learning can create unprecedented performance on both property prediction and molecular design simultaneously. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:01:10Z (GMT). No. of bitstreams: 1 U0001-1108202215300500.pdf: 5405859 bytes, checksum: 7f38d03fa64bb1158f40056adc061b7a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 中文摘要 III Abstract IV Table of Contents VI List of Figures IX List of Tables XIV Chapter 1. Introduction 1 1.1. Property Prediction and Molecular Design 1 1.2. Natural Language Processing and Transformer 5 1.3. Leveraging Transformer for SMILES and Computational Chemistry Tasks 7 Chapter 2. Theory 11 2.1. Machine Learning 11 2.1.1. Deep Neural Network 14 2.1.2. Transformer 19 2.1.3. Variational Autoencoder 26 2.2. Molecular Representation and SMILES 30 Chapter 3. Computational Details 35 3.1. Model Architecture 35 3.1.1. Original Transformer 35 3.1.2. Transformer with the Latent Space 38 3.1.3. Transformer Proposed in This Work 40 3.2. Model Application 42 3.2.1. Generating New Molecules Without Constraints 43 3.2.2. Predicting Molecular Property 46 3.2.3. Designing New Molecules with the Targeted Property 49 3.3. Dataset 54 Chapter 4. Results and Discussions 60 4.1. Does the Transformer Successfully Learn Chemical Rules? 60 4.2. Can We Generate New Molecules by Sampling in the Latent Space? 65 4.2.1. The Ability of Different Transformers to Generate New Molecules 65 4.2.2. Improving Validity by Tuning the Hyperparameter Beta in the Loss Function 69 4.3. Does the Latent Space Contain Meaningful Chemical Information? 76 4.3.1. The Molecules in the ZINC Dataset 76 4.3.2. The Newly Generated Molecules 83 4.4. Can We Design New Molecules with the Targeted Property? 101 Chapter 5. Conclusions and Future Prospects 113 Reference 117 | |
| dc.language.iso | en | |
| dc.subject | Transformer模型 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 計算化學 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 分子設計 | zh_TW |
| dc.subject | Transformer模型 | zh_TW |
| dc.subject | 分子設計 | zh_TW |
| dc.subject | 變分自動編碼器 | zh_TW |
| dc.subject | 性質預測 | zh_TW |
| dc.subject | 計算化學 | zh_TW |
| dc.subject | 性質預測 | zh_TW |
| dc.subject | 變分自動編碼器 | zh_TW |
| dc.subject | Transformer | en |
| dc.subject | machine learning | en |
| dc.subject | variational autoencoder | en |
| dc.subject | computational chemistry | en |
| dc.subject | property prediction | en |
| dc.subject | molecular design | en |
| dc.subject | machine learning | en |
| dc.subject | Transformer | en |
| dc.subject | variational autoencoder | en |
| dc.subject | computational chemistry | en |
| dc.subject | property prediction | en |
| dc.subject | molecular design | en |
| dc.title | 利用Transformer機器學習模型進行性質預測以及分子設計 | zh_TW |
| dc.title | Property Prediction and Molecular Design Using Transformer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林立強(Li-Chiang Lin),李奕霈(Yi-Pei Li),謝介銘(Chieh-Ming Hsieh) | |
| dc.subject.keyword | 機器學習,Transformer模型,變分自動編碼器,計算化學,性質預測,分子設計, | zh_TW |
| dc.subject.keyword | machine learning,Transformer,variational autoencoder,computational chemistry,property prediction,molecular design, | en |
| dc.relation.page | 121 | |
| dc.identifier.doi | 10.6342/NTU202202303 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-24 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202215300500.pdf | 5.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
