請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86516完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥仰(Mike Y. Chen) | |
| dc.contributor.author | Yun-Ting Cheng | en |
| dc.contributor.author | 鄭筠庭 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:00:27Z | - |
| dc.date.copyright | 2022-08-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-15 | |
| dc.identifier.citation | 1. D. Ablart, W. Frier, H. Limerick, O. Georgiou, and M. Obrist. Using ultrasonic mid-air haptic patterns in multi-modal user experiences. In 2019 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE), pages 1–6, 2019. 2. M. Aickin and H. Gensler. Adjusting for multiple testing when reporting research results: the bonferroni vs holm methods. American journal of public health, 86(5):726–728, 1996. 3. M. E. Altinsoy and S. Merchel. Electrotactile feedback for handheld devices with touch screen and simulation of roughness. IEEE Transactions on Haptics, 5(1):6–13, 2012. 4. K. Amemiya and Y. Tanaka. Portable tactile feedback interface using air jet. In The 9th International Conference on Artificial Reality and Telexistence Proceedings, volume 99, pages 115–122, Tokyo, Japan, 1999. The Virtual Reality Society of Japan. 5. E. Asaga, K. Takemura, T. Maeno, A. Ban, and M. Toriumi. Tactile evaluation based on human tactile perception mechanism. Sensors and Actuators A Physical, 203:69–75, 12 2013. 6. S. Asano, S. Okamoto, Y. Matsuura, and Y. Yamada. Toward quality texture display: vibrotactile stimuli to modify material roughness sensations. Advanced Robotics, 28(16):1079–1089, 2014. 7. S. Asano, S. Okamoto, and Y. Yamada. Vibrotactile stimulation to increase and decrease texture roughness. IEEE Transactions on Human-Machine Systems, 45(3):393–398, 2015. 8. H. Barreiro, S. Sinclair, and M. A. Otaduy. Ultrasound rendering of tactile interaction with fluids. In 2019 IEEE World Haptics Conference (WHC), pages 521–526, New York, USA, 2019. IEEE. 9. D. Beattie, W. Frier, O. Georgiou, B. Long, and D. Ablart. Incorporating the perception of visual roughness into the design of mid-air haptic textures. In ACM Symposium on Applied Perception 2020, SAP ’20, New York, NY, USA, 2020. Association for Computing Machinery. 10. D. Beattie, O. Georgiou, A. Harwood, R. Clark, B. Long, and T. Carter. Mid-air haptic textures from graphics. Proceedings of the IEEE World Haptics (WiP Paper), 2019. 11. M. Bianchi, J. Gwilliam, A. Degirmenci, and A. Okamura. Characterization of an air jet haptic lump display. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2011:3467–70, 08 2011. 12. T. Carter, S. A. Seah, B. Long, B. Drinkwater, and S. Subramanian. Ultrahaptics: Multi-point mid-air haptic feedback for touch surfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, page 505–514, New York, NY, USA, 2013. Association for Computing Machinery. 13. H. Cha, H. Lee, J. Park, H.-S. Kim, S.-C. Chung, and S. Choi. Mid-air tactile display using indirect laser radiation for contour-following stimulation and assessment of its spatial acuity. In 2017 IEEE World Haptics Conference (WHC), pages 136–141, New York, USA, 2017. IEEE. 14. Y.-T. Chen. ’the difference of imagery perception between visual and tactile sensation. ’The Difference of Imagery Perception between Visual and Tactile Sensation, 14:233–240, 04 2015. 15. M. Choi, B. Kim, H.-S. Kim, J.-H. Jo, and S.-C. Chung. The use of natural language to communicate the perception of vibrotactile stimuli. Somatosensory & Motor Research, 36:1–7, 03 2019. 16. G. Cirio, M. Marchal, A. Lécuyer, and J. R. Cooperstock. Vibrotactile rendering of splashing fluids. IEEE Transactions on Haptics, 6(1):117–122, 2013. 17. G. Cirio, M. Marchal, M. A. Otaduy, and A. Lécuyer. Six-oof haptic interaction with fluids, solids, and their transitions. In 2013 World Haptics Conference (WHC), pages 157–162, New York, USA, 2013. IEEE. 18. A. O. Cramer, D. van Ravenzwaaij, D. Matzke, H. Steingroever, R. Wetzels, R. P. Grasman, L. J. Waldorp, and E.-J. Wagenmakers. Hidden multiplicity in exploratory multiway anova: Prevalence and remedies. Psychonomic bulletin & review, 23(2):640–647, 2016. 19. M. Dariosecq, P. Plénacoste, F. Berthaut, A. Kaci, and F. Giraud. Investigating the semantic perceptual space of synthetic textures on an ultrasonic based haptic tablet. In HUCAPP 2020, Valletta, Malta, Feb. 2020. 20. R. Doizaki, J. Watanabe, and M. Sakamoto. Automatic estimation of multidimensional ratings from a single sound-symbolic word and word-based visualization of tactile perceptual space. IEEE Transactions on Haptics, 10(2):173–182, 2017. 21. G. Frediani and F. Carpi. Tactile display of softness on fingertip. Scientific Reports, 10, 11 2020. 22. E. Freeman, R. Anderson, J. Williamson, G. Wilson, and S. A. Brewster. Textured surfaces for ultrasound haptic displays. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, ICMI ’17, page 491–492, New York, NY, USA, 2017. Association for Computing Machinery. 23. P. Galambos. Vibrotactile feedback for haptics and telemanipulation: Survey, concept and experiment. Acta Polytechnica Hungarica, 9:41–65, 01 2012. 24. T. Gathmann, S. F. Atashzar, P. G. S. Alva, and D. Farina. Wearable dual-frequency vibrotactile system for restoring force and stiffness perception. IEEE Transactions on Haptics, 13(1):191–196, 2020. 25. S. Gilman. Joint position sense and vibration sense: anatomical organisation and assessment. Journal of Neurology, Neurosurgery & Psychiatry, 73(5):473–477, 2002. 26. S. Guest, J. Dessirier, A. Mehrabyan, F. Mcglone, G. Essick, G. Gescheider, A. Fontana, R. Xiong, R. Ackerley, and K. Blot. The development and validation of sensory and emotional scales of touch perception. Attention, perception & psychophysics, 73:531–50, 02 2011. 27. S. Guest, A. Mehrabyan, G. Essick, N. Phillips, A. Hopkinson, and F. Mcglone. Physics and tactile perception of fluid-covered surfaces. Journal of texture studies, 43(1):77–93, 2012. 28. S. Gupta, D. Morris, S. N. Patel, and D. Tan. Airwave: Non-contact haptic feedback using air vortex rings. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13, page 419–428, New York, NY, USA, 2013. Association for Computing Machinery. 29. J. C. Gwilliam, A. Degirmenci, M. Bianchi, and A. M. Okamura. Design and control of an air-jet lump display. In 2012 IEEE Haptics Symposium (HAPTICS), pages 45–49, New York, USA, 2012. IEEE. 30. G. Hannig, B. Deml, and A. Mihalyi. Simulating surface roughness in virtual environments by vibro-tactile feedback. IFAC Proceedings Volumes, 40(16):224–229, 2007. 10th IFAC,IFIP,IFORS,IEA Symposium on Analysis, Design, and Evaluation of Human-Machine Systems. 31. I. H. M. Hashim, S. Kumamoto, K. Takemura, T. Maeno, S. Okuda, and Y. Mori. Tactile evaluation feedback system for multi-layered structure inspired by human tactile perception mechanism. Sensors, 17(11), 2017. 32. S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2):65–70, 1979. 33. K. Inoue, F. Kato, and S. Lee. Haptic device using flexible sheet and air jet for presenting virtual lumps under skin. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1749–1754, New York, USA, 2009. IEEE. 34. K. Ito, S. Okamoto, H. Elfekey, and Y. Yamada. High-quality texture display: The use of vibrotactile and variable-friction stimuli in conjunction. In S. Hasegawa, M. Konyo, K.-U. Kyung, T. Nojima, and H. Kajimoto, editors, Haptic Interaction, pages 125–130, Singapore, 2018. Springer Singapore. 35. K. Ito, S. Okamoto, Y. Yamada, and H. Kajimoto. Tactile texture display with vibrotactile and electrostatic friction stimuli mixed at appropriate ratio presents better roughness textures. ACM Trans. Appl. Percept., 16(4), sep 2019. 36. T. Iwamoto, M. Tatezono, and H. Shinoda. Non-contact method for producing tactile sensation using airborne ultrasound. pages 504–513, 06 2008. 37. J. Jang and J. Park. Sph fluid tactile rendering for ultrasonic mid-air haptics. IEEE Transactions on Haptics, 13(1):116–122, 2020. 38. J.-H. Jun, J.-R. Park, S.-P. Kim, Y. Bae, J.-Y. Park, H.-S. Kim, S. Choi, S. J. Jung, S. Park, D.-I. Yeom, G.-I. Jung, J.-S. Kim, and S.-C. Chung. Laser-induced thermoelastic effects can evoke tactile sensations. Scientific Reports, 5:11016, 06 2015. 39. H. Kajimoto, M. Inami, N. Kawakami, and S. Tachi. Smarttouch – augmentation of skin sensation with electrocutaneous display. In 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings., pages 40–46, New York, USA, 2003. IEEE. 40. H. Kajimoto, N. Kawakami, T. Maeda, and S. Tachi. Electro-tactile display with tactile primary color approach. Graduate School of Information and Technology, The University of Tokyo, 2004. 41. T. Kamigaki, K. Nakatsuma, Y. Oshima, and I. Torigoe. Detection of ultrasound pressure distribution for remote measurement of haptic surface roughness. In 2015 IEEE SENSORS, pages 1–4, New York, USA, 2015. IEEE. 42. C. Kervegant, F. Raymond, D. Graeff, and J. Castet. Touch hologram in mid-air. In ACM SIGGRAPH 2017 Emerging Technologies, SIGGRAPH ’17, New York, NY, USA, 2017. Association for Computing Machinery. 43. S. Lederman, J. Loomis, and D. Williams. The role of vibration in the tactual perception of roughness. perception & psychophysics, 32, 109-116. Perception & psychophysics, 32:109–16, 09 1982. 44. H. Lee, H. Cha, J. Park, S. Choi, H.-S. Kim, and S.-C. Chung. Laserstroke: Midair tactile experiences on contours using indirect laser radiation. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16 Adjunct, page 73–74, New York, NY, USA, 2016. Association for Computing Machinery. 45. H. Lee, J.-S. Kim, S. Choi, J.-H. Jun, J.-R. Park, A.-H. Kim, H.-B. Oh, H.-S. Kim, and S.-C. Chung. Mid-air tactile stimulation using laser-induced thermoelastic effects: The first study for indirect radiation. In 2015 IEEE World Haptics Conference (WHC), pages 374–380, New York, USA, 2015. IEEE. 46. J. Lee and G. Lee. Designing a non-contact wearable tactile display using airflows. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, page 183–194, New York, NY, USA, 2016. Association for Computing Machinery. 47. Q. Liu, H. Z. Tan, L. Jiang, and Y. Zhang. Perceptual dimensionality of manual key clicks. In 2018 IEEE Haptics Symposium (HAPTICS), pages 112–118, New York, USA, 2018. IEEE. 48. S.-H. Liu, P.-C. Yen, Y.-H. Mao, Y.-H. Lin, E. Chandra, and M. Y. Chen. Headblaster: A wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Trans. Graph., 39(4), July 2020. 49. B. Long, S. A. Seah, T. Carter, and S. Subramanian. Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans. Graph., 33(6), nov 2014. 50. M. Marchal, G. Gallagher, A. Lécuyer, and C. Pacchierotti. Can stiffness sensations be rendered in virtual reality using mid-air ultrasound haptic technologies? In Haptics: Science, Technology, Applications: 12th International Conference, EuroHaptics 2020, Leiden, The Netherlands, September 6–9, 2020, Proceedings, page297–306, Berlin, Heidelberg, 2020. Springer-Verlag. 51. A. Matsubayashi, T. Yamaguchi, Y. Makino, and H. Shinoda. Rendering softness using airborne ultrasound. In 2021 IEEE World Haptics Conference (WHC), pages 355–360, New York, USA, 2021. IEEE. 52. J. Mora and W.-S. Lee. Real-time fluid interaction with a haptic device. In 2007 IEEE International Workshop on Haptic, Audio and Visual Environments and Games, pages 160–165, New York, USA, 2007. IEEE. 53. H. Moskowitz. Sweetness and intensity of artificial sweeteners. Attention Perception & Psychophysics, 8:40–42, 01 1970. 54. H. R. MOSKOWITZ. Magnitude estimation: Notes on what, how, when, and why to use it. Journal of Food Quality, 1(3):195–227, 1977. 55. Y. Muramatsu and M. Niitsuma. Correspondence relationships between vibrotactile stimuli and tactile sensations determined by semantic differential. In 2013 IEEE RO-MAN, pages 668–673, New York, USA, 2013. IEEE. 56. H. Nagano, S. Okamoto, and Y. Yamada. Semantically layered structure of tactile textures. In M. Auvray and C. Duriez, editors, Haptics: Neuroscience, Devices, Modeling, and Applications, pages 3–9, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. 57. M. Obrist, S. A. Seah, and S. Subramanian. Talking about tactile experiences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, page 1659–1668, New York, NY, USA, 2013. Association for Computing Machinery. 58. S. Okamoto, H. Nagano, and Y. Yamada. Psychophysical dimensions of tactile perception of textures. IEEE Transactions on Haptics, 6(1):81–93, 2013. 59. M. Okui, T. Masuda, T. Tamura, Y. Onozuka, and T. Nakamura. Wearable air-jet force feedback device without exoskeletal structure and its application to elastic ball rendering. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 276–281, New York, USA, 2020. IEEE. 60. D. Pamungkas and W. Caesarendra. Overview electrotactile feedback for enhancing human computer interface. Journal of Physics: Conference Series, 1007:012001, 04 2018. 61. R. L. Peiris, L. Chan, and K. Minamizawa. Liquidreality: Wetness sensations on the face for virtual reality. In D. Prattichizzo, H. Shinoda, H. Z. Tan, E. Ruffaldi, and A. Frisoli, editors, Haptics: Science, Technology, and Applications, pages 366–378, Cham, 2018. Springer International Publishing. 62. Z. Prášková. Bootstrap in nonstationary autoregression. Kybernetika, 38(4):389– 404, 2002. 63. I. Rakkolainen, E. Freeman, A. Sand, R. Raisamo, and S. Brewster. A survey of midair ultrasound haptics and its applications. IEEE Transactions on Haptics, 14(1):2–19, 2021. 64. I. Rakkolainen, A. Sand, and R. Raisamo. A survey of mid-air ultrasonic tactile feedback. In 2019 IEEE International Symposium on Multimedia (ISM), pages 94–944, New York, USA, 2019. IEEE. 65. P. Ratsamee, Y. Orita, Y. Kuroda, and H. Takemura. Flowhaptics: Mid-air haptic representation of liquid flow. Applied Sciences, 11(18), 2021. 66. J. M. Romano and K. J. Kuchenbecker. The airwand: Design and characterization of a large-workspace haptic device. In 2009 IEEE International Conference on Robotics and Automation, pages 1461–1466, New York, USA, 2009. IEEE. 67. M. Sakamoto and J. Watanabe. Exploring tactile perceptual dimensions using materials associated with sensory vocabulary. Frontiers in Psychology, 8:569, 04 2017. 68. T. Sakurai, M. Konyo, and S. Tadokoro. Presenting sharp surface shapes using overlapped vibrotactile stimuli. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3300–3307, New York, USA, 2012. IEEE. 69. A. Sand, I. Rakkolainen, P. Isokoski, J. Kangas, R. Raisamo, and K. Palovuori. Headmounted display with mid-air tactile feedback. In Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, VRST ’15, page 51–58, New York, NY, USA, 2015. Association for Computing Machinery. 70. S. B. Schorr and A. M. Okamura. Fingertip tactile devices for virtual object manipulation and exploration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 3115–3119, New York, NY, USA, 2017. Association for Computing Machinery. 71. A. Sherstyuk. Haptic wind. In Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, ACE ’08, page 408, New York, NY, USA, 2008. Association for Computing Machinery. 72. K. Shirota, M. Uju, R. Peiris, and K. Minamizawa. Liquid-vr - wetness sensations for immersive virtual reality experiences. In H. Kajimoto, D. Lee, S.-Y. Kim, M. Konyo, and K.-U. Kyung, editors, Haptic Interaction, pages 252–255, Singapore, 2019. Springer Singapore. 73. A. Shtarbanov and V. M. Bove Jr. Free-space haptic feedback for 3d displays via air-vortex rings. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA ’18, page 1–6, New York, NY, USA, 2018. Association for Computing Machinery. 74. C. Shultz and C. Harrison. Lrair: Non-contact haptics using synthetic jets. In 2022 IEEE Haptics Symposium (HAPTICS), pages 1–6, 2022. 75. K. N. Smith, K. N. Lamb, and R. K. Henson. Making meaning out of manova: The need for multivariate post hoc testing in gifted education research. Gifted Child Quarterly, 64(1):41–55, 2020. 76. R. Sodhi, I. Poupyrev, M. Glisson, and A. Israr. Aireal: Interactive tactile experiences in free air. ACM Trans. Graph., 32(4), July 2013. 77. H. Sonar, J.-L. Huang, and J. Paik. Soft touch using soft pneumatic actuator–skin as a wearable haptic feedback device. Advanced Intelligent Systems, 3:2000168, 01 2021. 78. H. A. Sonar, A. P. Gerratt, S. P. Lacour, and J. Paik. Closed-loop haptic feedback control using a self-sensing soft pneumatic actuator skin. Soft robotics, 7(1):22–29, 2020. 79. A. A. Stanley, J. C. Gwilliam, and A. M. Okamura. Haptic jamming: A deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. In 2013 World Haptics Conference (WHC), pages 25–30, New York, USA, 2013. IEEE. 80. P. Strohmeier and K. Hornbæk. Generating haptic textures with a vibrotactile actuator. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 4994–5005, New York, NY, USA, 2017. Association for Computing Machinery. 81. T. Takeda, A. Niijima, T. Mukouchi, and T. Satou. Creating illusion of wind blowing with air vortex-induced apparent tactile motion. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, CHI EA ’20, page 1–7, New York, NY, USA, 2020. Association for Computing Machinery. 82. S. Takei, R. Watanabe, R. Okazaki, T. Hachisu, and H. Kajimoto. Presentation of Softness Using Film-Type Electro-Tactile Display and Pressure Distribution Measurement, pages 91–96. Springer Japan, Tokyo, 2015. 83. A. Talhan, H. Kim, and S. Jeon. Wearable soft pneumatic ring with multi-mode controlling for rich haptic effects. In ACM SIGGRAPH 2019 Posters, SIGGRAPH’19, New York, NY, USA, 2019. Association for Computing Machinery. 84. Y. Tao, S.-Y. Teng, and P. Lopes. Altering perceived softness of real rigid objects by restricting fingerpad deformation. In The 34th Annual ACM Symposium on User Interface Software and Technology, UIST ’21, page 985–996, New York, NY, USA, 2021. Association for Computing Machinery. 85. Texas Instruments. Haptic Energy Consumption, 2014. 86. M. Y. Tsalamlal, P. Issartel, N. Ouarti, and M. Ammi. Hair: Haptic feedback with a mobile air jet. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 2699–2706, New York, USA, 2014. IEEE. 87. M. Y. Tsalamlal, N. Ouarti, and M. Ammi. Psychophysical study of air jet based tactile stimulation. In 2013 World Haptics Conference (WHC), pages 639–644, New York, USA, 2013. IEEE. 88. W.-J. Tseng, Y.-C. Lee, R. L. Peiris, and L. Chan. A skin-stroke display on the eyering through head-mounted displays. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–13, New York, NY, USA, 2020. Association for Computing Machinery. 89. Y.-W. Wang, Y.-H. Lin, P.-S. Ku, Y. Miyatake, Y.-H. Mao, P. Y. Chen, C.-M. Tseng, and M. Y. Chen. Jetcontroller: High-speed ungrounded 3-dof force feedback con trollers using air propulsion jets. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery. 90. E. Whitmire, H. Benko, C. Holz, E. Ofek, and M. Sinclair. Haptic revolver: Touch, shear, texture, and shape rendering on a reconfigurable virtual reality controller. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–12, New York, NY, USA, 2018. Association for Computing Machinery. 91. H. J. B. Witteveen, F. Luft, J. S. Rietman, and P. H. Veltink. Stiffness feedback for myoelectric forearm prostheses using vibrotactile stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(1):53–61, 2014. 92. J. Xu, Y. Kuroda, S. Yoshimoto, and O. Oshiro. Non-contact cold thermal display by controlling low-temperature air flow generated with vortex tube. In 2019 IEEE World Haptics Conference (WHC), pages 133–138, New York, USA, 2019. IEEE. 93. G.-H. Yang, K.-U. Kyung, M. Srinivasan, and D.-S. Kwon. Quantitative tactile display device with pin-array type tactile feedback and thermal feedback. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pages 3917–3922, 2006. 94. F. S. Üstün. Haptic and visual dimensions of perceived softness. Thesis (M.S.): Bilkent University, Department of Neuroscience, İhsan Doğramacı Bilkent University, 2017, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86516 | - |
| dc.description.abstract | 我們提出 AirVibe,探索並研究高頻(0 到 160 赫茲)壓縮空氣和空氣流速如何影響觸覺感知。我們首先進行了感知研究,以了解高頻空氣的質性體驗,然後進行幅度估計使用者研究,以研究空氣頻率和空氣流速如何影響使用者最常提到的觸覺感知:彈性、流動性、毛羽性、粗糙度和起伏性。結果表明,較高的空氣頻率導致感知較高的流動性和較低的彈性、起伏性和粗糙度;而較高的空氣流速導致感知較高的毛羽性和較低的彈性、流動性、起伏性和粗糙度。此外,空氣頻率對這五種觸覺感知幅度的影響為 1.4 倍到 5.1 倍,空氣頻率和空氣流速相結合可以進一步將幅度動態範圍擴大到 3.1 倍到 13.3 倍。 | zh_TW |
| dc.description.abstract | We present AirVibe, which explores and models how high-frequency compressed air (0 - 160 Hz) and air speed affect perceived tactile sensations. We first conducted a perception study to understand the qualitative experience of high-frequency air, followed by a magnitude estimation study to model how air frequency and air speed affect the most frequently mentioned tactile perceptions: elasticity, fluidity, hairiness, roughness, and bumpiness. Results show that higher air frequency leads to higher perceived fluidity and lower elasticity, bumpiness, and roughness; whereas higher air speed leads to higher perceived hairiness but lower elasticity, fluidity, bumpiness, and roughness. Furthermore, air frequency affects the perceived magnitude of these five tactile sensations by a factor of 1.4x - 5.1x, and air frequency and air speed combined can further expand the dynamic range to 3.1x - 13.3x. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:00:27Z (GMT). No. of bitstreams: 1 U0001-0108202213550700.pdf: 3136427 bytes, checksum: 866fe0b7a041de18e33a369238dd87ad (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Related Work 4 2.1 Simulating Fluidity and Softness . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Fluidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Softness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Non-contact Tactile Feedback . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Air-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 System Design, Implementation, and Validation 9 3.1 Pneumatic Control System . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Blowing Force vs. Air Frequency . . . . . . . . . . . . . . . . . . . . . 10 3.3 Air Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Operating Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Tactile Perception Study 14 4.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.1 Airflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.2 Variable Air Speed . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Tasks, Setup, and Participants . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.2 Tactile Perception Vocabulary . . . . . . . . . . . . . . . . . . . 15 4.2.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.4 Task and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 20 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.2 40 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.3 80 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.4 160 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3.5 Constant Airflow . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Magnitude Estimation Study 21 5.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Air Jet Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2 Tactile Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Participants, Setup, and Tasks . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.3 Task and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 Results . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.1 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.2 Fluidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.3 Hairiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.4 Bumpiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.5 Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.6 LDA interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Discussion and Future Work 31 6.1 Air Jet Frequency Psychophysical Study . . . . . . . . . . . . . . . . . . 31 6.2 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.3 Limitation of Air Jet Device . . . . . . . . . . . . . . . . . . . . . . . . 33 6.3.1 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.3.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.3.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.3.4 Air Compressor and Tubing . . . . . . . . . . . . . . . . . . . . 35 7 Conclusion 36 Bibliography 37 Appendix A 49 A.1 Magnitude Estimation Study Data . . . . . . . . . . . . . . . . . . . . . 49 | |
| dc.language.iso | en | |
| dc.subject | 觸覺感知 | zh_TW |
| dc.subject | 觸覺回饋設計 | zh_TW |
| dc.subject | 高頻高壓空氣 | zh_TW |
| dc.subject | 觸覺感知 | zh_TW |
| dc.subject | 觸覺回饋設計 | zh_TW |
| dc.subject | 高頻高壓空氣 | zh_TW |
| dc.subject | High-frequency compressed air | en |
| dc.subject | Designing haptics | en |
| dc.subject | Tactile sensation | en |
| dc.subject | Designing haptics | en |
| dc.subject | High-frequency compressed air | en |
| dc.subject | Tactile sensation | en |
| dc.title | 以高頻壓縮空氣渲染觸覺感知 | zh_TW |
| dc.title | AirVibe: Rendering Tactile Sensations using High-frequency Compressed Air | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭龍磻(Lung-Pan Cheng),陳炳宇(Bing-Yu Chen),蔡欣叡(Hsin-Ruey Tsai),余能豪(Neng-Hao Yu) | |
| dc.contributor.oralexamcommittee-orcid | ,陳炳宇(0000-0003-0169-7682),蔡欣叡(0000-0003-4764-0139) | |
| dc.subject.keyword | 觸覺回饋設計,高頻高壓空氣,觸覺感知, | zh_TW |
| dc.subject.keyword | Designing haptics,High-frequency compressed air,Tactile sensation, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202201933 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-22 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0108202213550700.pdf | 3.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
