請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林守德(Shou-De Lin) | |
| dc.contributor.author | Nien-En Sun | en |
| dc.contributor.author | 孫念恩 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:59:33Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-15 | |
| dc.identifier.citation | M. S. Acharya, A. Armaan, and A. S. Antony. A comparison of regression models for prediction of graduate admissions. In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), pages 1–5, 2019. Aditya. 100,000 uk used car data set, Jul 2020. P. Almeida, L. Soares de Oliveira, A. Jr, and R. Sabourin. Adapting the dynamic classifier selection for concept drift scenarios. Expert Systems with Applications, 104:67–85, 08 2018. K. Bache and M. Lichman. UCI machine learning repository, 2013. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive online analysis. J. Mach. Learn. Res., 11:1601–1604, aug 2010. D. Brzezinski and J. Stefanowski. Reacting to different types of concept drift: The accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems, 25(1):81–94, 2014. P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):547–553, 2009. Smart Business Networks: Concepts and Empirical Evidence. R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary environments. IEEE Transactions on Neural Networks, 22(10):1517–1531, 2011. K. Fernandes, P. Vinagre, and P. Cortez. A proactive intelligent decision support system for predicting the popularity of online news. In Portuguese conference on artificial intelligence, pages 535–546. Springer, 2015. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014. Ö. Gözüaçik and F. Can. Concept learning using one-class classifiers for implicit drift detection in evolving data streams. Artif. Intell. Rev., 54:3725–3747, 2021. E. B. Gulcan and F. Can. Implicit concept drift detection for multi-label data streams. arXiv preprint arXiv:2202.00070, 2022. Harlfoxem. House sales in king county, usa, Aug 2016. M. Harries and N. S. Wales. Splice-2 comparative evaluation: Electricity pricing, 1999. H. Kaya, P. Tüfekci, and F. S. Gürgen. Local and global learning methods for predicting power of a combined gas & steam turbine. In Proceedings of the international conference on emerging trends in computer and electronics engineering ICETCEE, pages 13–18, 2012. K. Khandelwal, D. Dhaka, and V. Barsopia. Predicting future classifiers for evolving non-linear decision boundaries. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 628–643. Springer, 2020. M. Kolárik, M. Sarnovský, and J. Paralič. Diversity in ensemble model for classification of data streams with concept drift. In 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI), pages 000355–000360, 2021. A. Kumagai and T. Iwata. Learning future classifiers without additional data. In Thirtieth AAAI Conference on Artificial Intelligence, 2016. A. Kumagai and T. Iwata. Learning non-linear dynamics of decision boundaries for maintaining classification performance. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), Feb. 2017. A. Kumagai and T. Iwata. Learning dynamics of decision boundaries without additional labeled data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1627–1636, 2018. W. Li, X. Yang, W. Liu, Y. Xia, and J. Bian. Ddg-da: Data distribution generation for predictable concept drift adaptation. Proceedings of the AAAI Conference on Artificial Intelligence, 36(4):4092–4100, Jun. 2022. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):2346–2363, 2019. R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):291–297, 1997. Y. Sun, K. Tang, Z. Zhu, and X. Yao. Concept drift adaptation by exploiting historical knowledge. IEEE Transactions on Neural Networks and Learning Systems, 29(10):4822–4832, 2018. P. Tüfekci. Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. International Journal of Electrical Power & Energy Systems, 60:126–140, 2014. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta. Chemical gas sensor drift compensation using classifier ensembles. Sensors and Actuators B: Chemical, 166-167:320–329, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86501 | - |
| dc.description.abstract | 在實務中對資料流進行機器學習模型的訓練與預測時,時常會面臨到資料分布隨著時間而改變的問題,此現象又稱為概念漂移。近年來,深度學習網路已廣泛運用於許多領域,並成為主流。本篇論文首先設計了一個自注意力機制的深度學習網路,並取名為動態預測器。動態預測器透過預測未來資料分布來解決概念漂移問題。基於動態預測器,此篇論文接著提出了兩個集成學習方法DP.FUTURE及DP.ALL來分別解決漸變式的實際概念漂移與真實世界的概念漂移。最後,透過實驗於合成資料集、套用閾值之迴歸資料集及真實世界之資料集,此篇論文所提出的方法比起當前最先進的概念漂移解決方案,達到了更好的預測性能。 | zh_TW |
| dc.description.abstract | In real-world situations, we often have to handle the problem of the changing data distribution over time, which is also called concept drift. In recent years, neural-network-based methods have become the mainstream in many fields. In this work, we design a self-attention-based network called 'dynamic predictor', which can predict the future data distribution to solve concept drift problems. Based on the dynamic predictor, we also propose DP.FUTURE and DP.ALL to handle incremental actual drift and real-world concept drift, respectively. Finally, we conduct experiments on synthetic datasets, regression datasets with thresholds, and real-world datasets. Experiment results show that our proposed methods outperform other SOTAs. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:59:33Z (GMT). No. of bitstreams: 1 U0001-1308202222495400.pdf: 4498928 bytes, checksum: 2964de05bdd917ffdbf186acfca3efff (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 iii 摘要 iv Abstract v Contents vi List of Figures viii List of Tables x Chapter 1 Introduction 1 Chapter 2 Related Work 7 Chapter 3 Problem Definition 11 Chapter 4 Methodology 13 4.1 Dynamic Predictor 13 4.2 DP.FUTURE ensemble method 17 4.3 DP.ALL ensemble method 21 4.3.1 Framework of DP.ALL 22 4.3.2 Weighted voting mechanism of DP.ALL 27 Chapter 5 Experiments 30 5.1 Datasets 30 5.1.1 Synthetic Datasets 31 5.1.2 Regression Datasets with Thresholds 34 5.1.3 Real-world Datasets 36 5.2 Compared Methods 38 5.3 Hyperparameters 40 5.4 Results 41 5.4.1 Comparison on synthetic datasets and regression datasets with thresholds 41 5.4.2 Comparison on real-world datasets 44 5.4.3 Analysis of the three ensembles in DP.ALL 48 5.5 Ablation Study 49 5.5.1 The performance of DP.FUTURE on real-world datasets 49 5.5.2 The direct prediction of the dynamic predictor 50 Chapter 6 Conclusion 52 References 53 | |
| dc.language.iso | en | |
| dc.subject | 集成學習 | zh_TW |
| dc.subject | 概念漂移 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 決策邊界 | zh_TW |
| dc.subject | 資料流學習 | zh_TW |
| dc.subject | 概念漂移 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 集成學習 | zh_TW |
| dc.subject | 決策邊界 | zh_TW |
| dc.subject | 資料流學習 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | Concept Drift | en |
| dc.subject | Deep Learning | en |
| dc.subject | Ensemble Learning | en |
| dc.subject | Decision Boundary | en |
| dc.subject | Data Stream Learning | en |
| dc.subject | Concept Drift | en |
| dc.subject | Data Stream Learning | en |
| dc.subject | Decision Boundary | en |
| dc.subject | Ensemble Learning | en |
| dc.title | 使用動態預測決策邊界的集成學習方法解決概念漂移的問題 | zh_TW |
| dc.title | Predictive Ensemble Learning Based on the Dynamic Predictor for Concept Drift Scenarios | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林軒田(Hsuan-Tien Lin),彭文志(Wen-Chih Peng),李政德(Cheng-Te Li) | |
| dc.subject.keyword | 概念漂移,深度學習,集成學習,決策邊界,資料流學習, | zh_TW |
| dc.subject.keyword | Concept Drift,Deep Learning,Ensemble Learning,Decision Boundary,Data Stream Learning, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202202372 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202222495400.pdf | 4.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
