Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨(Huai-Jen Tsai)
dc.contributor.authorHong-Yu Chenen
dc.contributor.author陳泓宇zh_TW
dc.date.accessioned2023-03-19T23:59:11Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-27
dc.identifier.citationAhmad, S. S., Glatzle, J., Bajaeifer, K., Bühler, S., Lehmann, T., Königsrainer, I., Vollmer, J. P., Sipos, B., Ahmad, S. S., Northoff, H., Königsrainer, A., & Zieker, D. (2013). Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer. International Journal of Oncology, 43(2), 586–590. doi:10.3892/ijo.2013.1971 Blake, C. C., & Rice, D. W. (1981). Phosphoglycerate kinase. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 293(1063), 93–104. doi:10.1098/rstb.1981.0063 Boon, K. L., Xiao, S., McWhorter, M. L., Donn, T., Wolf-Saxon, E., Bohnsack, M. T., Moens, C. B., & Beattie, C. E. (2009). Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects. Human Molecular Genetics, 18(19), 3615–3625. doi:10.1093/hmg/ddp310 Brown, R. H., & Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. New England Journal of Medicine, 377(2), 162–172. doi:10.1056/NEJMra1603471 Burns, F. R., von Kannen, S., Guy, L., Raper, J. A., Kamholz, J., & Chang, S. (1991). DM-GRASP, a novel immunoglobulin superfamily axonal surface protein that supports neurite extension. Neuron, 7(2), 209–220. doi:10.1016/0896-6273(91)90259-3 Cai, Q., Wang, S., Jin, L., Weng, M., Zhou, D., Wang, J., Tang, Z., & Quan, Z. (2019). Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Molecular Cancer, 18(1), 82. doi:10.1186/s12943-019-1016-0 Cartegni, L., & Krainer, A. R. (2002). Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nature Genetics, 30(4), 377–384. doi:10.1038/ng854 Cashman, N. R., Durham, H. D., Blusztajn, J. K., Oda, K., Tabira, T., Shaw, I. T., Dahrouge, S., & Antel, J. P. (1992). Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Developmental Dynamics, 194(3), 209–221. doi:10.1002/aja.1001940306 Chen, Z., Zhuang, W., Wang, Z., Xiao, W., Don, W., Li, X., & Chen, X. (2019). MicroRNA‐450b‐3p inhibits cell growth by targeting phosphoglycerate kinase 1 in hepatocellular carcinoma. Journal of Cellular Biochemistry, 120(11), 18805–18815. doi:10.1002/jcb.29196 Chiarelli, L. R., Morera, S. M., Bianchi, P., Fermo, E., Zanella, A., Galizzi, A., & Valentini, G. (2012). Molecular insights on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS ONE, 7(2), e32065. doi:10.1371/journal.pone.0032065 Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004). ClusPro: A fully automated algorithm for protein-protein docking. Nucleic Acids Research, 32, W96–W99. doi:10.1093/nar/gkh354 Coovert, D. (1997). The survival motor neuron protein in spinal muscular atrophy. Human Molecular Genetics, 6(8), 1205–1214. doi:10.1093/hmg/6.8.1205 Czarna, A., Breitkreuz, H., Mahrenholz, C. C., Arens, J., Strauss, H. M., & Wolf, E. (2011). Quantitative analyses of cryptochrome-mBMAL1 interactions. Journal of Biological Chemistry, 286(25), 22414–22425. doi:10.1074/jbc.M111.244749 DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., Nicholson, A. M., Finch, N. A., Flynn, H., Adamson, J., Kouri, N., Wojtas, A., Sengdy, P., Hsiung, G. Y. R., Karydas, A., Seeley, W. W., Josephs, K. A., Coppola, G., Geschwind, D. H., … Rademakers, R. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-Linked FTD and ALS. Neuron, 72(2), 245–256. doi:10.1016/j.neuron.2011.09.011 Eisen, J. S. (1991). Motoneuronal development in the embryonic zebrafish. Development (Cambridge, England). Supplement, Suppl 2, 141–147. Eisen, J. S. (1998). Genetic and molecular analyses of motoneuron development. Current Opinion in Neurobiology, 8(6), 697–704. doi:10.1016/S0959-4388(98)80110-4 Eisen, J. S., Myers, P. Z., & Westerfield, M. (1986). Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature, 320(6059), 269–271. doi:10.1038/320269a0 Farel, P. B., & Bemelmans, S. E. (1985). Specificity of motoneuron projection patterns during development of the bullfrog tadpole (Rana catesbeiana). The Journal of Comparative Neurology, 238(1), 128–134. doi:10.1002/cne.902380112 Fashena, D., & Westerfield, M. (1999). Secondary motoneuron axons localize DM-GRASP on their fasciculated segments. The Journal of Comparative Neurology, 406(3), 415–424. doi:10.1002/(SICI)1096-9861(19990412)406:3<415::AID-CNE9>3.0.CO;2-2 Flanagan-Steet, H., Fox, M. A., Meyer, D., & Sanes, J. R. (2005). Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development, 132(20), 4471–4481. doi:10.1242/dev.02044 Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The Proteomics Protocols Handbook (pp. 571–607). Humana Press. doi:10.1385/1-59259-890-0:571 Ge, J., Li, J., Na, S., Wang, P., Zhao, G., & Zhang, X. (2019). MiR‐548c‐5p inhibits colorectal cancer cell proliferation by targeting PGK1. Journal of Cellular Physiology, 234(10), 18872–18878. doi:10.1002/jcp.28525 Gibson, J. M., Cui, H., Ali, M. Y., Zhao, X., Debler, E. W., Zhao, J., Trybus, K. M., Solmaz, S. R., & Wang, C. (2022). Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment. ELife, 11, e74714. doi:10.7554/eLife.74714 GrandPré, T., Nakamura, F., Vartanian, T., & Strittmatter, S. M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature, 403(6768), 439–444. doi:10.1038/35000226 Gros-Louis, F., Kriz, J., Kabashi, E., McDearmid, J., Millecamps, S., Urushitani, M., Lin, L., Dion, P., Zhu, Q., Drapeau, P., Julien, J. P., & Rouleau, G. A. (2008). Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish. Human Molecular Genetics, 17(17), 2691–2702. doi:10.1093/hmg/ddn171 Hadano, S., Benn, S. C., Kakuta, S., Otomo, A., Sudo, K., Kunita, R., Suzuki-Utsunomiya, K., Mizumura, H., Shefner, J. M., Cox, G. A., Iwakura, Y., Brown, R. H., & Ikeda, J. E. (2006). Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking. Human Molecular Genetics, 15(2), 233–250. doi:10.1093/hmg/ddi440 Hollyday, M. (1980). Organization of motor pools in the chick lumbar lateral motor column. The Journal of Comparative Neurology, 194(1), 143–170. doi:10.1002/cne.901940108 Hwang, T. L., Liang, Y., Chien, K. Y., & Yu, J. S. (2006). Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. PROTEOMICS, 6(7), 2259–2272. doi:10.1002/pmic.200500345 Jindal, H. K., & Vishwanatha, J. K. (1990). Functional identity of a primer recognition protein as phosphoglycerate kinase. The Journal of Biological Chemistry, 265(12), 6540–6543. Kabashi, E., Lin, L., Tradewell, M. L., Dion, P. A., Bercier, V., Bourgouin, P., Rochefort, D., Bel Hadj, S., Durham, H. D., Velde, C. V., Rouleau, G. A., & Drapeau, P. (2010). Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Human Molecular Genetics, 19(4), 671–683. doi:10.1093/hmg/ddp534 Kabashi, E., Valdmanis, P. N., Dion, P., Spiegelman, D., McConkey, B. J., Velde, C. V., Bouchard, J. P., Lacomblez, L., Pochigaeva, K., Salachas, F., Pradat, P. F., Camu, W., Meininger, V., Dupre, N., & Rouleau, G. A. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics, 40(5), 572–574. doi:10.1038/ng.132 Kanki, J. P., Chang, S., & Kuwada, J. Y. (1994). The molecular cloning and characterization of potential chick DM-GRASP homologs in zebrafish and mouse. Journal of Neurobiology, 25(7), 831–845. doi:10.1002/neu.480250708 Kantarci, H., Gou, Y., & Riley, B. B. (2020). The Warburg Effect and lactate signaling augment Fgf-MAPK to promote sensory-neural development in the otic vesicle. ELife, 9, e56301. doi:10.7554/eLife.56301 Kashima, T., & Manley, J. L. (2003). A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nature Genetics, 34(4), 460–463. doi:10.1038/ng1207 Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., Burrell, J. R., & Zoing, M. C. (2011). Amyotrophic lateral sclerosis. The Lancet, 377(9769), 942–955. doi:10.1016/S0140-6736(10)61156-7 Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes11Edited by F. Cohen. Journal of Molecular Biology, 305(3), 567–580. doi:10.1006/jmbi.2000.4315 Lamb, A. H. (1976). The projection patterns of the ventral horn to the hind limb during development. Developmental Biology, 54(1), 82–99. doi:10.1016/0012-1606(76)90288-8 Lamb, A. H. (1977). Neuronal death in the development of the somatotopic projections of the ventral horn in xenopus. Brain Research, 134(1), 145–150. doi:10.1016/0006-8993(77)90932-5 Lance-Jones, C., & Landmesser, L. (1981). Pathway selection by chick lumbosacral motoneurons during normal development. Proceedings of the Royal Society of London. Series B. Biological Sciences, 214(1194), 1–18. doi:10.1098/rspb.1981.0079 Lay, A. J., Jiang, X. M., Kisker, O., Flynn, E., Underwood, A., Condron, R., & Hogg, P. J. (2000). Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature, 408(6814), 869–873. doi:10.1038/35048596 Lefebvre, S., Burlet, P., Liu, Q., Bertrandy, S., Clermont, O., Munnich, A., Dreyfuss, G., & Melki, J. (1997). Correlation between severity and SMN protein level in spinal muscular atrophy. Nature Genetics, 16(3), 265–269. doi:10.1038/ng0797-265 Lemmens, R., Van Hoecke, A., Hersmus, N., Geelen, V., D’Hollander, I., Thijs, V., Van Den Bosch, L., Carmeliet, P., & Robberecht, W. (2007). Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. Human Molecular Genetics, 16(19), 2359–2365. doi:10.1093/hmg/ddm193 Leppert, C. A., Diekmann, H., Paul, C., Laessing, U., Marx, M., Bastmeyer, M., & Stuermer, C. A. O. (1999). Neurolin Ig domain 2 participates in retinal axon guidance and Ig domains 1 and 3 in fasciculation. Journal of Cell Biology, 144(2), 339–349. doi:10.1083/jcb.144.2.339 Li, S. C., Goto, N. K., Williams, K. A., & Deber, C. M. (1996). Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proceedings of the National Academy of Sciences, 93(13), 6676–6681. doi:10.1073/pnas.93.13.6676 Lin, C. Y., Wu, C. L., Lee, K. Z., Chen, Y. J., Zhang, P. H., Chang, C. Y., Harn, H. J., Lin, S. Z., & Tsai, H. J. (2019). Extracellular Pgk1 enhances neurite outgrowth of motoneurons through Nogo66/NgR-independent targeting of NogoA. ELife, 8, e49175. doi:10.7554/eLife.49175 Lin, C. Y., Tseng, H. C., Chu, Y. R., Wu, C. L., Zhang, P. H., & Tsai, H. J. (2022). Cerebroventricular injection of Pgk1 attenuates MPTP-induced neuronal toxicity in dopaminergic cells in zebrafish brain in a glycolysis-independent manner. International Journal of Molecular Sciences, 23(8), 4150. doi:10.3390/ijms23084150 McGrath, P. A., & Bennett, M. R. (1979). The development of synaptic connections between different segmental motoneurones and striated muscles in an axolotl limb. Developmental Biology, 69(1), 133–145. doi:10.1016/0012-1606(79)90280-X McWhorter, M. L., Monani, U. R., Burghes, A. H. M., & Beattie, C. E. (2003). Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. Journal of Cell Biology, 162(5), 919–932. doi:10.1083/jcb.200303168 Michelson, A. M., Blake, C. C., Evans, S. T., & Orkin, S. H. (1985). Structure of the human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain. Proceedings of the National Academy of Sciences, 82(20), 6965–6969. doi:10.1073/pnas.82.20.6965 Monani, U. R. (1999). A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Human Molecular Genetics, 8(7), 1177–1183. doi:10.1093/hmg/8.7.1177 Myers, P., Eisen, J., & Westerfield, M. (1986). Development and axonal outgrowth of identified motoneurons in the zebrafish. The Journal of Neuroscience, 6(8), 2278–2289. doi:10.1523/JNEUROSCI.06-08-02278.1986 Myers, P. Z. (1985). Spinal motoneurons of the larval zebrafish. The Journal of Comparative Neurology, 236(4), 555–561. doi:10.1002/cne.902360411 Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., Bruce, J., Schuck, T., Grossman, M., Clark, C. M., McCluskey, L. F., Miller, B. L., Masliah, E., Mackenzie, I. R., Feldman, H., Feiden, W., Kretzschmar, H. A., Trojanowski, J. Q., & Lee, V. M. Y. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–133. doi:10.1126/science.1134108 Oprea, G. E., Kröber, S., McWhorter, M. L., Rossoll, W., Müller, S., Krawczak, M., Bassell, G. J., Beattie, C. E., & Wirth, B. (2008). Plastin 3 Is a protective modifier of autosomal recessive spinal muscular atrophy. Science, 320(5875), 524–527. doi:10.1126/science.1155085 Paschke, K., Lottspeich, F., & Stuermer, C. (1992). Neurolin, a cell surface glycoprotein on growing retinal axons in the goldfish visual system, is reexpressed during retinal axonal regeneration. Journal of Cell Biology, 117(4), 863–875. doi:10.1083/jcb.117.4.863 Pettigrew, A. G., Lindeman, R., & Bennett, M. R. (1979). Development of the segmental innervation of the chick forelimb. Journal of Embryology and Experimental Morphology, 49, 115–137. Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30(12), 1771–1773. doi:10.1093/bioinformatics/btu097 Pike, S. H., Melancon, E. F., & Eisen, J. S. (1992). Pathfinding by zebrafish motoneurons in the absence of normal pioneer axons. Development, 114(4), 825–831. doi:10.1242/dev.114.4.825 Pottier, C., Bieniek, K. F., Finch, N., van de Vorst, M., Baker, M., Perkersen, R., Brown, P., Ravenscroft, T., van Blitterswijk, M., Nicholson, A. M., DeTure, M., Knopman, D. S., Josephs, K. A., Parisi, J. E., Petersen, R. C., Boylan, K. B., Boeve, B. F., Graff-Radford, N. R., Veltman, J. A., … Rademakers, R. (2015). Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathologica, 130(1), 77–92. doi:10.1007/s00401-015-1436-x Prasanth, K. R., Chuang, C., & Nagy, P. D. (2017). Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLOS Pathogens, 13(10), e1006689. doi:10.1371/journal.ppat.1006689 Renton, A. E., Chiò, A., & Traynor, B. J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience, 17(1), 17–23. doi:10.1038/nn.3584 Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., Deng, H. X., Rahmani, Z., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., … Brown, R. H. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362(6415), 59–62. doi:10.1038/362059a0 Simpson, C. L., Lemmens, R., Miskiewicz, K., Broom, W. J., Hansen, V. K., van Vught, P. W. J., Landers, J. E., Sapp, P., Van Den Bosch, L., Knight, J., Neale, B. M., Turner, M. R., Veldink, J. H., Ophoff, R. A., Tripathi, V. B., Beleza, A., Shah, M. N., Proitsi, P., Van Hoecke, A., … Al-Chalabi, A. (2009). Variants of the elongator protein 3 ( ELP3 ) gene are associated with motor neuron degeneration. Human Molecular Genetics, 18(3), 472–481. doi:10.1093/hmg/ddn375 Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J. C., Williams, K. L., Buratti, E., Baralle, F., de Belleroche, J., Mitchell, J. D., Leigh, P. N., Al-Chalabi, A., Miller, C. C., Nicholson, G., & Shaw, C. E. (2008). TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Science, 319(5870), 1668–1672. doi:10.1126/science.1154584 Sun, R., Meng, X., Pu, Y., Sun, F., Man, Z., Zhang, J., Yin, L., & Pu, Y. (2019). Overexpression of HIF-1a could partially protect K562 cells from 1,4-benzoquinone induced toxicity by inhibiting ROS, apoptosis and enhancing glycolysis. Toxicology in Vitro, 55, 18–23. doi:10.1016/j.tiv.2018.11.005 The SLAGEN Consortiu, Pensato, V., Tiloca, C., Corrado, L., Bertolin, C., Sardone, V., Del Bo, R., Calini, D., Mandrioli, J., Lauria, G., Mazzini, L., Querin, G., Ceroni, M., Cantello, R., Corti, S., Castellotti, B., Soldà, G., Duga, S., Comi, G. P., … Silani, V. (2015). TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: Identification of novel mutations. Journal of Neurology, 262(5), 1376–1378. doi:10.1007/s00415-015-7739-y Valentini, G., Maggi, M., & Pey, A. (2013). Protein stability, folding and misfolding in human PGK1 Deficiency. Biomolecules, 3(4), 1030–1052. doi:10.3390/biom3041030 Westerfield, M., McMurray, J., & Eisen, J. (1986). Identified motoneurons and their innervation of axial muscles in the zebrafish. The Journal of Neuroscience, 6(8), 2267–2277. doi:10.1523/JNEUROSCI.06-08-02267.1986 Workman, E., Saieva, L., Carrel, T. L., Crawford, T. O., Liu, D., Lutz, C., Beattie, C. E., Pellizzoni, L., & Burghes, A. H. M. (2009). A SMN missense mutation complements SMN2 restoring snRNPs and rescuing SMA mice. Human Molecular Genetics, 18(12), 2215–2229. doi:10.1093/hmg/ddp157 Zhang, D., Tai, L. K., Wong, L. L., Chiu, L. L., Sethi, S. K., & Koay, E. S. C. (2005). Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive Breast Cancer. Molecular & Cellular Proteomics, 4(11), 1686–1696. doi:10.1074/mcp.M400221-MCP200 Zhou, J. W., Tang, J. J., Sun, W., & Wang, H. (2019). PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma. Molecular Medicine, 25(1), 11. doi:10.1186/s10020-019-0079-0
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86495-
dc.description.abstract肌萎縮性脊髓側索硬化症 (Amyotrophic lateral sclerosis, ALS) 是由於脊髓的運動神經元退化而逐漸無法支配肌肉,病人肌肉逐漸萎縮而癱瘓,最終由於橫膈膜肌肉也逐漸萎縮,導致病人無法呼吸而死亡。近年來發現extracellular Phosphoglycerate Kinase 1 (ePgk1)會透過Rac1-GTP/Pak1-T423/p38-T180/MK2-T334/Limk1-S323/ Cofilin-S3 訊息傳遞路徑來促進運動神經元的神經突生長。然而,尚不清楚骨骼肌肉細胞所分泌的 ePgk1 如何觸發運動神經元細胞,以經此傳遞路徑增強它們的神經突生長。另一方面,最近又發現若把重組Pgk1浸泡在NSC34神經細胞培養液發現細胞膜周圍可以檢測到外加的重組Pgk1信號,且透過Pull down/LC-MS/MS分析可能與Pgk1結合的神經細胞membrane proteins,接著利用Cell-surface Cross-linking immunoprecipitation找到神經細胞膜蛋白Py2與分泌的ePgk1有著最高的親和性。所以,本研究想進一步確認運動神經元膜上存在著Py2 receptor,它會與肌肉細胞分泌的 ePgk1 ligand相互作用以觸發信號傳遞,而增強運動神經元的神經突生長。首先,我在NSC34細胞中過量表現Py2,發現Py2分佈於細胞膜上,且在其培養液中添加Pgk1則會在細胞膜上與Py2產生信號重疊。其次將 py2過量表現於Tg(mnx 1:GFP) 斑馬魚轉殖品系,透過觀察胚胎之初級運動神經元 (primary motor neurons) 發現過量表現py2會增強促進神經突生長的能力;若過量表現py2再浸泡Pgk1則對其神經突生長的促進力具有加乘性的作用。相反地,若將py2 knockdown時,則會使其神經突生長被阻礙。另外,當注射truncated forms的 py2,那促進神經突生長的能力便會消失,表示ePgk1 domanin 促進神經突生長是重要的。最後,我應用分子對接 (molecular Docking) 程式推測py2與Pgk1 透過電荷(Electrostatics)作用將兩蛋白質以ligand和 receptor方式結合。有趣的是當我用突變Pgk1浸泡斑馬魚胚胎時,那促進神經突生長的能力就會消失。綜合以上,我們利用in vitro system的NSC34細胞與in vivo system的斑馬魚轉基因品系Tg(mnx 1:GFP)證實了py2作為運動神經細胞的membrane receptor,與ePgk1的ligand產生結合而傳遞訊息,以促使細胞斑馬魚胚胎運動神經元的神經突生長。zh_TW
dc.description.abstractAmyotrophic lateral sclerosis (ALS) is the progressive loss of muscle innervation due to the degeneration of motor neurons in the spinal cord, resulting in gradual atrophy and paralysis of muscles. Our lab previously found that extracellular Phosphoglycerate Kinase 1 (ePgk1) secreted from skeletal muscle cells could promote the neurite outgrowth of motor neurons through the Rac1-GTP/Pak1-T423/p38-T180/MK2-T334/Limk1-S323/ Cofilin-S3 signaling pathway. However, how ePgk1 could trigger motor neuron cells to promote neurite outgrowth via this pathway remains unknown. More recently, our lab also reported that when recombinant Pgk1 was added into the medium cultured mouse motor neuron hybrid NSC34 cells, the signal of recombinant ePgk1 could be detected around the cell membrane. Furthermore, when we used pull down/LC-MS/MS combined with cell-surface cross-linking immunoprecipitation, one of neural cell membrane proteins, Py2, showed the highest affinity with ePgk1. Therefore, in this study, I proposed that Py2 might serve as a receptor to interact with the ligand ePgk1 and enhance the neurite outgrowth of motor neurons through triggering the signal transduction described above. To answer this issue, first, I overexpressed Py2 cDNA in NSC34 cells and observed that Py2 was distributed around the cell membrane, which was colocalized the signal from the ePgk1 added in the culture medium. Second, I microinjected py2 mRNA into the transgenic zebrafish line Tg (mnx 1:GFP) and found that the neurite outgrowth of primary motor neurons was increased in embryos. Moreover, if overexpression of py2 mRNA combined with supplementary addition of ePgk1, I found that the neurite growth of motor neurons was increased synergistically. In contrast, knockdown of py2 in embryos displayed the retarded growth of motor neurons. Additionally, the capability of neurite outgrowth promotion was lost if I overexpressed the truncated form of Py2, suggesting that the domain is important for ePgk1 in the promotion of neurite outgrowth. Finally, using molecular docking program, I predicted that Py2 receptor might interact electrostatically with ePgk1 ligand. Interestingly, the promotion of neurite outgrowth was failure in the zebrafish embryos incubated with the mutant Pgk1, suggesting that the fragment within Pgk1 is a critical structure for ePgk1 function. Taken together, I concluded that Py2, serving as a membrane receptor of motor neurons, interacts with the ligand of ePgk1 to trigger the molecular signal, resulting in promotion of neurite outgrowth of zebrafish embryonic motor neurons.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:59:11Z (GMT). No. of bitstreams: 1
U0001-2309202214192400.pdf: 4515047 bytes, checksum: 6bc34b977ad3cce3a1955f1e1258d746 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書……………………………………i 誌謝………………………………………………………………ii 中文摘要……………………………………………… iii 英文摘要………………………………………………… iv 文獻回顧…………………………………………………… 1 前言…………………………………………………………… 8 材料與方法…………………………………………… 13 結果…………………………………………………………… 25 討論…………………………………………………………… 32 結論…………………………………………………………… 35 參考文獻 ……………………………………………… 36 圖說………………………………………………………………50 附錄………………………………………………………………57
dc.language.isozh-TW
dc.subject小鼠細胞株zh_TW
dc.subject斑馬魚zh_TW
dc.subject運動神經突zh_TW
dc.subject膜受器zh_TW
dc.subject磷酸甘油酸激酶zh_TW
dc.subject小鼠細胞株zh_TW
dc.subject斑馬魚zh_TW
dc.subject磷酸甘油酸激酶zh_TW
dc.subject膜受器zh_TW
dc.subject運動神經突zh_TW
dc.subjectmembrane receptoren
dc.subjectzebrafishen
dc.subjectmouse cell lineen
dc.subjectPgk1en
dc.subjectmotor neuriteen
dc.subjectzebrafishen
dc.subjectmouse cell lineen
dc.subjectPgk1en
dc.subjectmembrane receptoren
dc.subjectmotor neuriteen
dc.title以小鼠細胞株以及斑馬魚研究細胞外Pgk1與其神經膜受器的交互作用會促進運動神經突的生長zh_TW
dc.titleUsing Mouse Cell Line and Zebrafish as Models to Determine that the Neurite Outgrowth of Motor Neurons is Enhanced by the Interaction between Extracellular Pgk1 and its Neural Receptoren
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭邑荃(Yi-Chuan Cheng),林正勇(Cheng-Yung Lin),黃鐘慶(Jong-Chin Huang)
dc.subject.keyword斑馬魚,小鼠細胞株,磷酸甘油酸激酶,膜受器,運動神經突,zh_TW
dc.subject.keywordzebrafish,mouse cell line,Pgk1,membrane receptor,motor neurite,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202203910
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-2309202214192400.pdf4.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved