請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86492完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳祝嵩(Chu-Song Chen) | |
| dc.contributor.author | Chen-Hao Liao | en |
| dc.contributor.author | 廖晨皓 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:59:01Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-15 | |
| dc.identifier.citation | Y. Bian, P. Zhang, J. Wang, C. Wang, and S. Pu. Learning multiple explainable and generalizable cues for face anti-spoofing. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2310–2314, 2022. Z. Boulkenafet, J. Komulainen, and A. Hadid. Face anti-spoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Processing Letters, PP, 11 2016. Z. Boulkenafet, J. Komulainen, L. Li, X. Feng, and A. Hadid. OULU-NPU: A mobile face presentation attack database with real-world variations. In 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017), pages 612–618, 2017. Z. Chen, T. Yao, K. Sheng, S. Ding, Y. Tai, J. Li, F. Huang, and X. Jin. Generalizable representation learning for mixture domain face anti-spoofing. Proceedings of the AAAI Conference on Artificial Intelligence, 35(2):1132–1139, May 2021. I. Chingovska, A. Anjos, and S. Marcel. On the effectiveness of local binary patterns in face anti-spoofing. In 2012 BIOSIG- Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pages 1–7, 2012. Z. Dai, H. Liu, Q. V. Le, and M. Tan. Coatnet: Marrying convolution and attention for all data sizes. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 3965–3977. Curran Associates, Inc., 2021. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021. A. George and S. Marcel. Cross modal focal loss for rgbd face anti-spoofing. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. A. George and S. Marcel. On the effectiveness of vision transformers for zero-shot face anti-spoofing. In International Joint Conference on Biometrics (IJCB 2021), 2021. A. George, Z. Mostaani, D. Geissenbuhler, O. Nikisins, A. Anjos, and S. Marcel. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security, 15:42–55, 2020. J. Guo, X. Zhu, Y. Yang, F. Yang, Z. Lei, and S. Z. Li. Towards fast, accurate and stable 3d dense face alignment. In Proceedings of the European Conference on Computer Vision (ECCV), 2020. Y. Huang, J. Hsieh, M. Chang, L. Ke, S. Lyu, and A. S. Santra. Multi-teacher single-student visual transformer with multi-level attention for face spoofing detection. In 32nd British Machine Vision Conference 2021, BMVC 2021, Online, November 22-25, 2021, page 125. BMVA Press, 2021. Y. Jia, J. Zhang, S. Shan, and X. Chen. Single-side domain generalization for face anti-spoofing. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. J. Komulainen, A. Hadid, and M. Pietikäinen. Context based face anti-spoofing. In 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pages 1–8, 2013. S. Liu, S. Lu, H. Xu, J. Yang, S. Ding, and L. M. Feature generation and hypothesis verification for reliable face anti-spoofing. In Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI), 2022. S. Liu, K. -Y. Zhang, T. Yao, M. Bi, S. Ding, J. Li, F. Huang, and L. Ma. Adaptive normalized representation learning for generalizable face anti-spoofing. In H. T. Shen, Y. Zhuang, J. R. Smith, Y. Yang, P. Cesar, F. Metze, and B. Prabhakaran, editors, MM ’21: ACM Multimedia Conference, Virtual Event, China, October 20 - 24, 2021, pages 1469–1477. ACM, 2021. Y. Liu, A. Jourabloo, and X. Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021. S. Mehta, F. Abdolhosseini, and M. Rastegari. Cvnets: High performance library for computer vision. 2022. S. Mehta and M. Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. In International Conference on Learning Representations, 2022. M. Naseer, K. Ranasinghe, S. Khan, M. Hayat, F. Khan, and M.-H. Yang. Intriguing properties of vision transformers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, 2021. M. Rostami, L. Spinoulas, M. Hussein, J. Mathai, and W. Abd-Almageed. Detection and continual learning of novel face presentation attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 14851–14860, October 2021. R. Shao, X. Lan, J. Li, and P. C. Yuen. Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. R. Shao, X. Lan, and P. C. Yuen. Regularized fine-grained meta face anti-spoofing. In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc. C. -Y. Wang, Y. -D. Lu, S. -T. Yang, and S.-H. Lai. Patchnet: A simple face anti-spoofing framework via fine-grained patch recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 20281–20290, June 2022. G. Wang, H. Han, S. Shan, and X. Chen. Cross-domain face presentation attack detection via multi-domain disentangled representation learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6677– 6686, 06 2020. Y. -C. Wang, C. -Y. Wang, and S. -H. Lai. Disentangled representation with dual-stage feature learning for face anti-spoofing. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 1955–1964, January 2022. Z. Wang, Z. Wang, Z. Yu, W. Deng, J. Li, S. Li, and Z. Wang. Domain generalization via shuffled style assembly for face anti-spoofing. In CVPR, 2022. Z. Wang, Z. Yu, C. Zhao, X. Zhu, Y. Qin, Q. Zhou, F. Zhou, and Z. Lei. Deep spatial gradient and temporal depth learning for face anti-spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. D. Wen, H. Han, and A.K. Jain. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 10(4):746–761, 2015. Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face recognition. In European conference on computer vision, pages 499–515. Springer, 2016. J. Xiang and G. Zhu. Joint face detection and facial expression recognition with mtcnn. In 2017 4th International Conference on Information Science and Control Engineering (ICISCE), pages 424–427, 2017. J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan, and J. Gao. Focal attention for long-range interactions in vision transformers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 30008–30022. Curran Associates, Inc., 2021. X. L. Yaojie Liu, Joel Stehouwer. On disentangling spoof traces for generic face anti- spoofing. In In Proceeding of European Conference on Computer Vision (ECCV 2020), Virtual, 2020. Z. Yu, X. Li, X. Niu, J. Shi, and G. Zhao. Face anti-spoofing with human material perception. In A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer Vision – ECCV 2020, pages 557–575, Cham, 2020. Springer International Publishing. Z. Yu, Y. Qin, X. Li, C. Zhao, Z. Lei, and G. Zhao. Deep learning for face anti-spoofing: A survey. arXiv preprint arXiv:2106.14948, 2021. Z. Yu, Y. Qin, H. Zhao, X. Li, and G. Zhao. Dual-cross central difference network for face anti-spoofing. In Z.-H. Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 1281–1287. International Joint Conferences on Artificial Intelligence Organization, 8 2021. Main Track. Z. Yu, J. Wan, Y. Qin, X. Li, S. Z. Li, and G. Zhao. Nas-fas: Static-dynamic central difference network search for face anti-spoofing. In TPAMI, 2020. Z. Yu, C. Zhao, Z. Wang, Y. Qin, Z. Su, X. Li, F. Zhou, and G. Zhao. Searching central difference convolutional networks for face anti-spoofing. In CVPR, 2020. X. Zhang, R. Ng, and Q. Chen. Single image reflection separation with perceptual losses. In IEEE Conference on Computer Vision and Pattern Recognition, 2018. Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li. A face anti spoofing database with diverse attacks. In 2012 5th IAPR International Conference on Biometrics (ICB), pages 26–31, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86492 | - |
| dc.description.abstract | 隨著人臉辨識被大量地應用在生活中,與人臉活體驗證相關的研究也越發蓬勃,現行有許多方法能夠在特定的資料及上有很好的效果;然而在實際的應用上,人臉活體驗證模型應該要能夠被泛化到各種未知的領域 (domain)。近期 Vision Transformer 模型展現其在學習「具良好辨別性的特徵」的強大以及在許多視覺任務上有很好的表現,我們將它使用在跨領域的人臉活體驗證上。在這篇論文,我們首先簡述目前在人臉活體驗證上的研究方向,接著介紹我們提出的方法:Domain-invariant Vision Transformer (DiVT)。我們利用了兩項損失函數讓模型能夠有更好的泛化能力:為了讓模型能得知有多種方式被用於偽造影像,我們將真實資料以及使用不同攻擊手段的偽造資料各自集成群體,並將這些群體分離。其次,我們要求模型學習一個能夠適用於各個領域的特徵,並讓真實資料在特徵空間中能夠更集中,以幫助模型能更容易的區分出真實影像。實驗結果顯示,我們的方法達成了目前在跨領域之人臉活體驗證的最佳表現,且相較於之前的模型更簡單卻更有效。 | zh_TW |
| dc.description.abstract | Face recognition becomes more and more prevalent these days, which leads to numerous studies in face anti-spoofing (FAS). Existing FAS models have achieved high performance on specific datasets. However, for the application of real-world systems, the FAS model should generalize to the data from unknown domains rather than only achieve good results on a single baseline. As vision transformer models have demonstrated astonishing performance and strong capability in learning discriminative representations, we investigate applying transformers to distinguish the face presentation attacks over unknown domains. In this thesis, we first give a brief review of the research directions in FAS studies, then we propose the Domain-invariant Vision Transformer (DiVT) for FAS, which adopts two losses to improve the generalizability of the model. First, to make the model leverage the knowledge about the spoof data consisting of different types of attack, a separation loss is utilized to unify the real faces and the same types of attack, respectively. Then these groups are separated in the embedding space. Second, a concentration loss is employed to learn a domain-invariant representation that centralizes the features of real face data regardless of their domains, which helps the model to distinguish the real faces more easily. The experimental results show that our approach achieves state-of-the-art performance on the protocols of domain-generalized FAS tasks. Compared to previous domain generalization FAS models, our method is simpler but more effective. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:59:01Z (GMT). No. of bitstreams: 1 U0001-2207202216462700.pdf: 5346943 bytes, checksum: fa34d955f00b4c4f14ea582eafee5724 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter1 Introduction 1 1.1 Face Anti-Spoofing 1 Chapter2 Rekated work 7 2.1 RGB Image-based FAS 8 2.2 Transformers and FAS 11 Chapter3 Proposed method 15 3.1 Domain-invariant Attack-separation Loss 15 3.2 Domain-invariant Concentration Loss 18 3.3 Training and Testing 20 Chapter4 Experiments 21 4.1 Datasets and Evaluation Metrics 21 4.2 Implementation Details 22 4.3 Domain Generalized Evaluation 23 4.3.1 Leave-one-out setting 23 4.3.2 Limited training data setting 25 4.4 Ablation Study 26 4.4.1 Different Backbones 28 4.4.2 Component Combinations 28 4.4.3 Classification Objectives 30 4.4.4 Impact of lambda 31 4.4.5 Comparison of computation resources 32 4.5 Extensions 32 Chapter5 Conclusion 37 References 39 | |
| dc.language.iso | en | |
| dc.subject | 域泛化 | zh_TW |
| dc.subject | 人臉活體驗證 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 視覺變換器 | zh_TW |
| dc.subject | 人臉辨識 | zh_TW |
| dc.subject | 人臉活體驗證 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 域泛化 | zh_TW |
| dc.subject | 視覺變換器 | zh_TW |
| dc.subject | 人臉辨識 | zh_TW |
| dc.subject | Vision Transformer | en |
| dc.subject | Face anti-spoofing | en |
| dc.subject | Deep learning | en |
| dc.subject | Domain generalization | en |
| dc.subject | Vision Transformer | en |
| dc.subject | Face recognition | en |
| dc.subject | Deep learning | en |
| dc.subject | Domain generalization | en |
| dc.subject | Face anti-spoofing | en |
| dc.subject | Face recognition | en |
| dc.title | 使用視覺變換器於跨領域之人臉活體驗證 | zh_TW |
| dc.title | Domain Generalized Vision Transformer for Face Anti-Spoofing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳駿丞(Jun-Cheng Chen),賴尚宏(Shang-Hong Lai),王新民(Hsin-Min Wang),葉倚任(Yi-Ren Yeh) | |
| dc.subject.keyword | 人臉活體驗證,深度學習,域泛化,視覺變換器,人臉辨識, | zh_TW |
| dc.subject.keyword | Face anti-spoofing,Deep learning,Domain generalization,Vision Transformer,Face recognition, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202201649 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2207202216462700.pdf | 5.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
