Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86486Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 丁建均(Jian-Jiun Ding) | |
| dc.contributor.author | Pei-Chi Huang | en |
| dc.contributor.author | 黃珮綺 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:58:40Z | - |
| dc.date.copyright | 2022-08-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-16 | |
| dc.identifier.citation | [1] https://en.wikipedia.org/wiki/Image_segmentation [2] D. Comaniciu and P. Meer, 'Mean shift: A robust approach toward feature space analysis,' IEEE Transactions on pattern analysis and machine intelligence, vol. 24, no. 5, pp. 603-619, 2002. [3] L. Vincent and P. Soille, 'Watersheds in digital spaces: an efficient algorithm based on immersion simulations,' IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 13, no. 06, pp. 583-598, 1991. [4] J. Shi and J. Malik, 'Normalized cuts and image segmentation,' IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888-905, 2000. [5] P. F. Felzenszwalb and D. P. Huttenlocher, 'Efficient graph-based image segmentation,' International journal of computer vision, vol. 59, no. 2, pp. 167-181, 2004. [6] Z. Li, X.-M. Wu, and S.-F. Chang, 'Segmentation using superpixels: A bipartite graph partitioning approach,' in 2012 IEEE conference on computer vision and pattern recognition, 2012: IEEE, pp. 789-796. [7] T. H. Kim, K. M. Lee, and S. U. Lee, 'Learning full pairwise affinities for spectral segmentation,' IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 7, pp. 1690-1703, 2012. [8] Y. Yang, Y. Wang, and X. Xue, 'A novel spectral clustering method with superpixels for image segmentation,' Optik, vol. 127, no. 1, pp. 161-167, 2016. [9] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, 'Contour detection and hierarchical image segmentation,' IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 5, pp. 898-916, 2010. [10] J. Long, E. Shelhamer, and T. Darrell, 'Fully convolutional networks for semantic segmentation,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440. [11] X. Xia and B. Kulis, 'W-net: A deep model for fully unsupervised image segmentation,' arXiv preprint arXiv:1711.08506, 2017. [12] O. Ronneberger, P. Fischer, and T. Brox, 'U-net: Convolutional networks for biomedical image segmentation,' in International Conference on Medical image computing and computer-assisted intervention, 2015: Springer, pp. 234-241. [13] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, 'Semantic image segmentation with deep convolutional nets and fully connected crfs,' arXiv preprint arXiv:1412.7062, 2014. [14] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, 'Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,' IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848, 2017. [15] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, 'Rethinking atrous convolution for semantic image segmentation,' arXiv preprint arXiv:1706.05587, 2017. [16] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, 'Encoder-decoder with atrous separable convolution for semantic image segmentation,' in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 801-818. [17] V. Jampani, D. Sun, M.-Y. Liu, M.-H. Yang, and J. Kautz, 'Superpixel sampling networks,' in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 352-368. [18] A. P. Kelm, V. S. Rao, and U. Zölzer, 'Object contour and edge detection with refinecontournet,' in International Conference on Computer Analysis of Images and Patterns, 2019: Springer, pp. 246-258. [19] J.-J. Ding and Y.-W. Tsai, 'Pixelwise Image Sharpness Based on the Weighted Response Ratios of Short and Long Edge Detectors,' in 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), 2021: IEEE, pp. 107-108. [20] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, 'SUN: A Bayesian framework for saliency using natural statistics,' Journal of vision, vol. 8, no. 7, pp. 32-32, 2008. [21] Textons using LM filters (source code) https://github.com/BATspock/Textons-colors [22] Textons figures: https://www.robots.ox.ac.uk/~vgg/research/texclass/with.html [23] J.-Y. Huang and J.-J. Ding, 'Generic Image Segmentation in Fully Convolutional Networks by Superpixel Merging Map,' in Proceedings of the Asian Conference on Computer Vision, 2020. [24] R. Unnikrishnan, C. Pantofaru, and M. Hebert, 'Toward objective evaluation of image segmentation algorithms,' IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 929-944, 2007. [25] M. Meilǎ, 'Comparing clusterings: an axiomatic view,' in Proceedings of the 22nd international conference on Machine learning, 2005, pp. 577-584. [26] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, 'From contours to regions: An empirical evaluation,' in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: IEEE, pp. 2294-2301. [27] T. Cour, F. Benezit, and J. Shi, 'Spectral segmentation with multiscale graph decomposition,' in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, vol. 2: IEEE, pp. 1124-1131. [28] C. J. Taylor, 'Towards fast and accurate segmentation,' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1916-1922. [29] M. Donoser and D. Schmalstieg, 'Discrete-continuous gradient orientation estimation for faster image segmentation,' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3158-3165. [30] Y. Zhang, M. Liu, J. He, F. Pan, and Y. Guo, 'Affinity fusion graph-based framework for natural image segmentation,' IEEE Transactions on Multimedia, 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86486 | - |
| dc.description.abstract | 在電腦視覺這個領域裡,影像分割是一個研究許多年的重要課題。影像分割指的是將影像細分為多個影像物件的過程,影像物件內的相素會具備某些相同的特徵,因此在本次的研究中,我們使用到多種影像識別特徵,包含:顏色、梯度、材質、亮度、銳度及顯著程度等資訊。 我們提出一個多層的超像素群聚演算法,將具備相似特徵值的超像素進行合併,第一階段是由RGB色彩空間、超像素邊界圖及邊緣偵測圖訓練全卷積網路模型,並由此模型決定相鄰的兩個超像素,其邊界是否該被保留;第二階段則透過評分法及支持向量機決定剩餘的超像素是否需再進一步合併,其中考量的條件包含Lab色彩空間、銳度、顯著圖、紋理感知基元等。整體而言,從模擬及評比數據上,我們的方法皆呈現高度影像分割正確性。 | zh_TW |
| dc.description.abstract | In the field of computer vision, image segmentation is an important task which has been explored for many years. Image segmentation is a process to partition an image into multiple segments. Pixels within the same segments share certain characteristics. Therefore, in this thesis, discriminative features are considered, including color, gradient, texture, brightness, sharpness, saliency and etc. We propose a multi-stage superpixel-clustering algorithm to merge superpixels of similar characteristics. In the first stage, the fully convolutional network is applied to decide whether the boundary of two adjacent superpixels should be kept or not. The model is trained basing on color, superpixel boundary, and edge of the image. In the second stage, scoring method and SVM classification model are used to further decide whether the rest superpixels should be merged or not. We consider up to 14 factors to further improve the performance. Overall, simulations and evaluation metrics show that our algorithm has highly accurate segmentation results. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:58:40Z (GMT). No. of bitstreams: 1 U0001-1508202210303300.pdf: 2926361 bytes, checksum: 37b1307406cfa6046857c446a82e446a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 中文摘要 ii Abstract iii Contents iv List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Main Contribution 2 1.3 Organization 2 Chapter 2 Reviews of Segmentation Algorithms 4 2.1 Classical segmentation approaches 4 2.1.1 Mean shift 4 2.1.2 Watershed 5 2.1.3 Normalized cut 6 2.1.4 Hierarchical Image Segmentation OWT-UCM 6 2.1.5 Segmentation Using Superpixel (SAS) 7 2.2 Deep learning in image segmentation 8 2.2.1 Fully Convolutional Networks (FCNs) 9 2.2.2 W-net 10 2.2.3 DeepLab 10 Chapter 3 Related Work 12 3.1 Superpixel Sampling Network 12 3.2 RefineContourNet 13 Chapter 4 Proposed Method 14 4.1 Introduction 14 4.2 Feature extraction 17 4.2.1 Contact Rate 17 4.2.2 Color space and Brightness 18 4.2.3 Background Rate 19 4.2.4 Gradient and Edge 21 4.2.5 Texture 23 4.2.6 Area size 24 4.2.7 Saliency map 25 4.2.8 Texton 26 4.3 Proposed Segmentation Algorithm 28 4.3.1 Stage 1: Generate prediction map through FCN model and merge superpixel according to the prediction map 28 4.3.2 Stage 2: Merge superpixel according to feature score and SVM prediction 29 4.4 Training architecture 30 4.4.1 Deep learning model 30 4.4.2 SVM model 31 Chapter 5 Simulations 33 5.1 Database and Evaluation Metrics 33 5.2 Improvement between stages 34 5.3 Comparison to the State-of-the-art Methods 35 5.4 Segmentation Results on BSDS500 images 37 Chapter 6 Conclusion 41 Reference 43 | |
| dc.language.iso | en | |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 超像素 | zh_TW |
| dc.subject | 全卷積網路 | zh_TW |
| dc.subject | 超像素 | zh_TW |
| dc.subject | 全卷積網路 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 特徵 | zh_TW |
| dc.subject | 特徵 | zh_TW |
| dc.subject | superpixel | en |
| dc.subject | feature | en |
| dc.subject | fully convolutional networks | en |
| dc.subject | Image segmentation | en |
| dc.subject | superpixel | en |
| dc.subject | fully convolutional networks | en |
| dc.subject | feature | en |
| dc.subject | Image segmentation | en |
| dc.title | 基於超像素並運用全卷積網路及識別特徵的多層影像切割演算法 | zh_TW |
| dc.title | Multi-Stage Superpixel-Based Segmentation Algorithm Using Fully Convolutional Networks and Discriminative Features | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧奕璋(Yi-Chang Lu),歐陽良昱(Liang-Yu Ou-Yang),余執彰(Chih-Chang Yu) | |
| dc.subject.keyword | 影像分割,超像素,全卷積網路,特徵, | zh_TW |
| dc.subject.keyword | Image segmentation,superpixel,fully convolutional networks,feature, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202202390 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-26 | - |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1508202210303300.pdf | 2.86 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
