Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86460Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王淑慧(Shu-Huei Wang) | |
| dc.contributor.author | You-Yu Liu | en |
| dc.contributor.author | 劉祐瑜 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:57:08Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-17 | |
| dc.identifier.citation | 1 Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73-84, doi:10.1002/hep.28431 (2016). 2 Fabbrini, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679-689, doi:10.1002/hep.23280 (2010). 3 Mantovani, A. et al. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 111S, 154170, doi:10.1016/j.metabol.2020.154170 (2020). 4 Tomeno, W. et al. Complications of Non-Alcoholic Fatty Liver Disease in Extrahepatic Organs. Diagnostics (Basel) 10, doi:10.3390/diagnostics10110912 (2020). 5 Trefts, E., Gannon, M. & Wasserman, D. H. The liver. Curr Biol 27, R1147-R1151, doi:10.1016/j.cub.2017.09.019 (2017). 6 Han, H. S., Kang, G., Kim, J. S., Choi, B. H. & Koo, S. H. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 48, e218, doi:10.1038/emm.2015.122 (2016). 7 Hodson, L. & Frayn, K. N. Hepatic fatty acid partitioning. Curr Opin Lipidol 22, 216-224, doi:10.1097/MOL.0b013e3283462e16 (2011). 8 Godoy-Matos, A. F., Silva Junior, W. S. & Valerio, C. M. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr 12, 60, doi:10.1186/s13098-020-00570-y (2020). 9 Byrne, C. D. & Targher, G. NAFLD: a multisystem disease. J Hepatol 62, S47-64, doi:10.1016/j.jhep.2014.12.012 (2015). 10 Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038-1048, doi:10.1016/j.metabol.2015.12.012 (2016). 11 Pessayre, D., Mansouri, A. & Fromenty, B. Nonalcoholic steatosis and steatohepatitis. V. Mitochondrial dysfunction in steatohepatitis. Am J Physiol Gastrointest Liver Physiol 282, G193-199, doi:10.1152/ajpgi.00426.2001 (2002). 12 Begriche, K., Massart, J., Robin, M. A., Bonnet, F. & Fromenty, B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58, 1497-1507, doi:10.1002/hep.26226 (2013). 13 Ibdah, J. A. et al. Mice heterozygous for a defect in mitochondrial trifunctional protein develop hepatic steatosis and insulin resistance. Gastroenterology 128, 1381-1390, doi:10.1053/j.gastro.2005.02.001 (2005). 14 Rector, R. S. et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol 52, 727-736, doi:10.1016/j.jhep.2009.11.030 (2010). 15 Chen, Z., Tian, R., She, Z., Cai, J. & Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 152, 116-141, doi:10.1016/j.freeradbiomed.2020.02.025 (2020). 16 Begriche, K., Igoudjil, A., Pessayre, D. & Fromenty, B. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6, 1-28, doi:10.1016/j.mito.2005.10.004 (2006). 17 Biddinger, S. B. & Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68, 123-158, doi:10.1146/annurev.physiol.68.040104.124723 (2006). 18 Bugianesi, E., Moscatiello, S., Ciaravella, M. F. & Marchesini, G. Insulin resistance in nonalcoholic fatty liver disease. Curr Pharm Des 16, 1941-1951, doi:10.2174/138161210791208875 (2010). 19 Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836-1846, doi:10.1002/hep.24001 (2010). 20 Utzschneider, K. M. & Kahn, S. E. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91, 4753-4761, doi:10.1210/jc.2006-0587 (2006). 21 Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610-614, doi:10.1038/39335 (1997). 22 Ota, T. et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 132, 282-293, doi:10.1053/j.gastro.2006.10.014 (2007). 23 Matsuzawa, N. et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46, 1392-1403, doi:10.1002/hep.21874 (2007). 24 Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24, 908-922, doi:10.1038/s41591-018-0104-9 (2018). 25 Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14, 804-810, doi:10.1016/j.cmet.2011.11.004 (2011). 26 Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 21, 739-746, doi:10.1016/j.cmet.2015.04.004 (2015). 27 Sanchez-Valle, V., Chavez-Tapia, N. C., Uribe, M. & Mendez-Sanchez, N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19, 4850-4860, doi:10.2174/092986712803341520 (2012). 28 Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48, 158-167, doi:10.1016/j.molcel.2012.09.025 (2012). 29 Liang, S., Kisseleva, T. & Brenner, D. A. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts. Front Physiol 7, 17, doi:10.3389/fphys.2016.00017 (2016). 30 Bhandary, B., Marahatta, A., Kim, H. R. & Chae, H. J. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14, 434-456, doi:10.3390/ijms14010434 (2012). 31 Day, E. A., Ford, R. J. & Steinberg, G. R. AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol Metab 28, 545-560, doi:10.1016/j.tem.2017.05.004 (2017). 32 Zhang, H. A., Yang, X. Y. & Xiao, Y. F. AMPKalpha1 overexpression alleviates the hepatocyte model of nonalcoholic fatty liver disease via inactivating p38MAPK pathway. Biochem Biophys Res Commun 474, 364-370, doi:10.1016/j.bbrc.2016.04.111 (2016). 33 Foretz, M., Carling, D., Guichard, C., Ferre, P. & Foufelle, F. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem 273, 14767-14771, doi:10.1074/jbc.273.24.14767 (1998). 34 Andreelli, F. et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147, 2432-2441, doi:10.1210/en.2005-0898 (2006). 35 Wang, Q. et al. Neurotropin Inhibits Lipid Accumulation by Maintaining Mitochondrial Function in Hepatocytes via AMPK Activation. Front Physiol 11, 950, doi:10.3389/fphys.2020.00950 (2020). 36 Guo, D., Bell, E. H., Mischel, P. & Chakravarti, A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des 20, 2619-2626, doi:10.2174/13816128113199990486 (2014). 37 Raghow, R., Yellaturu, C., Deng, X., Park, E. A. & Elam, M. B. SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19, 65-73, doi:10.1016/j.tem.2007.10.009 (2008). 38 Lee, Y. S. et al. Chromatin remodeling complex interacts with ADD1/SREBP1c to mediate insulin-dependent regulation of gene expression. Mol Cell Biol 27, 438-452, doi:10.1128/MCB.00490-06 (2007). 39 Pettinelli, P. et al. Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta 1792, 1080-1086, doi:10.1016/j.bbadis.2009.08.015 (2009). 40 Song, C. et al. Sericin enhances the insulin-PI3K/AKT signaling pathway in the liver of a type 2 diabetes rat model. Exp Ther Med 16, 3345-3352, doi:10.3892/etm.2018.6615 (2018). 41 Liu, Y. F. et al. Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol Cell Biol 24, 9668-9681, doi:10.1128/MCB.24.21.9668-9681.2004 (2004). 42 Huang, X., Liu, G., Guo, J. & Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14, 1483-1496, doi:10.7150/ijbs.27173 (2018). 43 Khushboo, P. S., Jadhav, V. M., Kadam, V. J. & Sathe, N. S. Psoralea corylifolia Linn.-'Kushtanashini'. Pharmacogn Rev 4, 69-76, doi:10.4103/0973-7847.65331 (2010). 44 Zhang, X., Zhao, W., Wang, Y., Lu, J. & Chen, X. The Chemical Constituents and Bioactivities of Psoralea corylifolia Linn.: A Review. Am J Chin Med 44, 35-60, doi:10.1142/S0192415X16500038 (2016). 45 Lee, S. W. et al. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation. Planta Med 78, 903-906, doi:10.1055/s-0031-1298482 (2012). 46 Hung, Y. L. et al. Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep 7, 46299, doi:10.1038/srep46299 (2017). 47 Yu, A. X. et al. Corylin, a flavonoid derived from Psoralea Fructus, induces osteoblastic differentiation via estrogen and Wnt/beta-catenin signaling pathways. FASEB J 34, 4311-4328, doi:10.1096/fj.201902319RRR (2020). 48 Chen, C. Y. et al. Corylin Suppresses Hepatocellular Carcinoma Progression via the Inhibition of Epithelial-Mesenchymal Transition, Mediated by Long Noncoding RNA GAS5. Int J Mol Sci 19, doi:10.3390/ijms19020380 (2018). 49 Chen, C. C. et al. Corylin Inhibits Vascular Cell Inflammation, Proliferation and Migration and Reduces Atherosclerosis in ApoE-Deficient Mice. Antioxidants (Basel) 9, doi:10.3390/antiox9040275 (2020). 50 Chen, C. C., Kuo, C. H., Leu, Y. L. & Wang, S. H. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and beta3-AR activation. Pharmacol Res 164, 105291, doi:10.1016/j.phrs.2020.105291 (2021). 51 Moslehi, A. & Hamidi-Zad, Z. Role of SREBPs in Liver Diseases: A Mini-review. J Clin Transl Hepatol 6, 332-338, doi:10.14218/JCTH.2017.00061 (2018). 52 Dorn, C. et al. Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int J Clin Exp Pathol 3, 505-514 (2010). 53 Skat-Rordam, J., Hojland Ipsen, D., Lykkesfeldt, J. & Tveden-Nyborg, P. A role of peroxisome proliferator-activated receptor gamma in non-alcoholic fatty liver disease. Basic Clin Pharmacol Toxicol 124, 528-537, doi:10.1111/bcpt.13190 (2019). 54 Lyons, C. L. & Roche, H. M. Nutritional Modulation of AMPK-Impact upon Metabolic-Inflammation. Int J Mol Sci 19, doi:10.3390/ijms19103092 (2018). 55 Sassa, S., Sugita, O., Galbraith, R. A. & Kappas, A. Drug metabolism by the human hepatoma cell, Hep G2. Biochem Biophys Res Commun 143, 52-57, doi:10.1016/0006-291x(87)90628-0 (1987). 56 Hewitt, N. J. & Hewitt, P. Phase I and II enzyme characterization of two sources of HepG2 cell lines. Xenobiotica 34, 243-256, doi:10.1080/00498250310001657568 (2004). 57 Roe, A. L., Snawder, J. E., Benson, R. W., Roberts, D. W. & Casciano, D. A. HepG2 cells: an in vitro model for P450-dependent metabolism of acetaminophen. Biochem Biophys Res Commun 190, 15-19, doi:10.1006/bbrc.1993.1003 (1993). 58 Geng, C. et al. Mst1 regulates hepatic lipid metabolism by inhibiting Sirt1 ubiquitination in mice. Biochem Biophys Res Commun 471, 444-449, doi:10.1016/j.bbrc.2016.02.059 (2016). 59 Wolf, G. High-fat, high-cholesterol diet raises plasma HDL cholesterol: studies on the mechanism of this effect. Nutr Rev 54, 34-35, doi:10.1111/j.1753-4887.1996.tb03772.x (1996). 60 Evans, J. L., Goldfine, I. D., Maddux, B. A. & Grodsky, G. M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52, 1-8, doi:10.2337/diabetes.52.1.1 (2003). 61 Lan, T., Kisseleva, T. & Brenner, D. A. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation. PLoS One 10, e0129743, doi:10.1371/journal.pone.0129743 (2015). 62 Huang, M. Y. et al. Corylin inhibits LPS-induced inflammatory response and attenuates the activation of NLRP3 inflammasome in microglia. BMC Complement Altern Med 18, 221, doi:10.1186/s12906-018-2287-5 (2018). 63 McGowan, K. M., Police, S., Winslow, J. B. & Pekala, P. H. Tumor necrosis factor-alpha regulation of glucose transporter (GLUT1) mRNA turnover. Contribution of the 3'-untranslated region of the GLUT1 message. J Biol Chem 272, 1331-1337, doi:10.1074/jbc.272.2.1331 (1997). 64 Takanaga, H., Chaudhuri, B. & Frommer, W. B. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778, 1091-1099, doi:10.1016/j.bbamem.2007.11.015 (2008). 65 Pessin, J. E. & Bell, G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu Rev Physiol 54, 911-930, doi:10.1146/annurev.ph.54.030192.004403 (1992). 66 Viollet, B. et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574, 41-53, doi:10.1113/jphysiol.2006.108506 (2006). 67 Boudaba, N. et al. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine 28, 194-209, doi:10.1016/j.ebiom.2018.01.008 (2018). 68 Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918-922, doi:10.1126/science.1215327 (2012). 69 Xiao, B. et al. Structural basis of AMPK regulation by small molecule activators. Nat Commun 4, 3017, doi:10.1038/ncomms4017 (2013). 70 Hinchy, E. C. et al. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem 293, 17208-17217, doi:10.1074/jbc.RA118.002579 (2018). 71 Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13, 376-388, doi:10.1016/j.cmet.2011.03.009 (2011). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86460 | - |
| dc.description.abstract | 非酒精性脂肪肝(nonalcoholic fatty liver disease; NAFLD)是造成代謝綜合症和第二型糖尿病的主因,臨床主要病徵為代謝失調,如高血糖、高血脂症和胰島素阻抗。補骨脂寧(Corylin)是一種從補骨脂 (Psoralea corylifolia L.)萃取出的異黃酮類化合物,多項研究已證實Corylin具有抗氧化及抗發炎作用,並且可以降低肥胖和胰島素阻抗發生。然而,Corylin 對於肝臟代謝的調控作用及機制尚不清楚,因此本研究目的是探討 Corylin 對非酒精脂肪肝疾病的影響。首先,在細胞實驗中使用棕櫚酸 (Palmitic acid, PA) 誘導人類肝細胞 (HepG2) 進行研究;在動物實驗部分,利用高脂飼料誘導小鼠肥胖的模式,藉由同時餵食Corylin 10週,藉此探討Corylin對於NAFLD的作用,透過評估肝細胞中油滴累積、胰島素阻抗性和非酒精性脂肪肝疾病的相關生化數值和蛋白質表達量,觀察Corylin是否可以抑制非酒精性脂肪肝的形成。本篇研究結果顯示,在細胞實驗結果方面,Corylin 具有減少脂質合成、保護棕櫚酸誘導粒線體功能的失調、降低氧化性壓力(oxidative stress)、並增加肝細胞葡萄糖攝取的能力和胰島素敏感度。在動物實驗部分,Corylin的餵食也顯示能有效減少高脂飲食誘導小鼠的體重增加、改善胰島素敏感度、抑制肝臟油滴堆積和纖維化的嚴重程度。AMP active protein kinase (5' adenosine monophosphate-activated protein kinase, AMPK)參與多種生理代謝,在細胞能量穩定中發揮作用,在肝臟中負責調控脂質和醣類代謝,本篇研究結果顯示Corylin 藉由增加AMPK的活化,抑制肝細胞中經由PA造成的油滴累積,改善粒線體活性和減少ROS的產生。綜合上述結果,我們推測Corylin 可以作為改善非酒精性脂肪肝疾病的新治療藥物選擇。 | zh_TW |
| dc.description.abstract | Nonalcoholic fatty liver disease (NAFLD) is a major cause of metabolic syndrome and type II diabetes, and it presents with metabolic disorders, such as hyperglycemia, hyperlipidemia, and insulin resistance. Corylin, a flavonoid compound extracted from Psoralea corylifolia L., has been shown to have antioxidant, anti-inflammatory effects and can reduce obesity and insulin resistance. However, it remains unknown whether Corylin could modulate the metabolism of liver, so the objective of this study is to explore the effect of Corylin on NAFLD. The anti-NAFLD effects of Corylin on fat accumulation, insulin resistance, and NAFLD-related physiological parameters and protein levels were assessed in high-fat diet (HFD)-induced obese mice in vivo and in palmitate (PA)-treated HepG2 cells in vitro. The present study showed that Corylin strikingly increased insulin sensitivity, glycogen synthesis and reduced body weight, fat accumulation, reactive oxygen species (ROS) and fibrosis in HFD-treated mice. In addition, Corylin also decreased lipid synthesis and improved mitochondria dysfunction, glucose uptake ability and insulin sensitivity in PA-induced HepG2 cells. Corylin significantly decreased the expression of lipid metabolism-related proteins level and improved the expression of glucose metabolism-related proteins level. The above effects of Corylin on NAFLD inhibition were through AMP-activated protein kinase (AMPK) pathway. Based on the above results, we speculate that Corylin can be used as a new treatment option for NAFLD. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:57:08Z (GMT). No. of bitstreams: 1 U0001-1008202214421700.pdf: 5695195 bytes, checksum: ddb5f4331556e0828ae0d991b3447f04 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 誌謝 II 摘要 III Abstract IV 目錄 V 壹、 緒論 1 一. 前言 1 二. 肝臟的代謝作用 1 三. 非酒精性脂肪肝疾病 2 四. 粒線體受損與非酒精性脂肪肝疾病的關聯 3 五. 胰島素阻抗與非酒精性脂肪肝疾病的關聯 4 六. 非酒精性脂肪肝炎和肝纖維化 4 七. 非酒精性脂肪肝疾病中的訊息傳遞路徑 6 八. Corylin與非酒精性脂肪肝疾病的關聯 8 九. 研究動機和實驗設計 9 貳、 實驗材料 10 一. 儀器設備 10 二. 實驗材料 10 藥品 10 細胞培養 10 結晶紫染色分析(Crystal violet stain assay) 10 西方墨點法(Western blot) 10 Triglycerides (TRIGS)/ Cholesterol (CHOL) assay 12 Oil Red O染色 12 BODIPY stain 12 ROS活性氧化物偵測 12 Mitoview螢光染色 12 2-NBDG螢光檢測 12 肝醣測試 (Glycogen assay) 12 動物實驗 12 蛋白質萃取(Protein Extraction) 12 石蠟切片包埋 13 冷凍切片包埋 13 H&E stain 13 訊號核醣核酸(mRNA) 13 PAS肝醣染色試驗 (Periodic Acid Schiff stain) 13 天狼星紅苦味酸染色 (PicroSirius red/fast green stain) 14 三. 溶液配置 14 參、 實驗方法 15 一. 細胞實驗 15 細胞株之培養 15 結晶紫染色分析(Crystal violet stain assay) 15 Oil red O stain (ORO stain) 15 BODIPY stain 16 Mitoview staining 16 2-NBDG staining 16 Glycogen assay 17 二. 動物實驗 17 非酒精性脂肪肝小鼠模式 17 石蠟切片包埋 18 冷凍切片包埋 18 Oil red O stain (ORO stain) 18 葡萄糖耐受性測試(Intraperitoneal glucose tolerance test; IPGTT) 18 胰島素耐受性測試(Intraperitoneal insulin tolerance test; IPITT) 19 蘇木紫-伊紅染色 (Hematoxylin and Eosin stain) 19 天狼星紅苦味酸染色 (PicroSirius Red / Fast green stain) 19 PAS肝醣染色試驗 (Periodic Acid Schiff stain) 19 ROS 活性氧化物檢測 20 基因表現之測定 20 西方墨點法(Western blot) 21 數據統計分析 22 肆、 實驗結果 23 一. Corylin 可以抑制經由 PA誘導的HepG2細胞中的脂質堆積 23 二. Corylin 可以保護由PA誘導的肝細胞粒線體受損 24 三. Corylin 可以抑制PA誘導的肝細胞中ROS過量產生 24 四. Corylin 改善 PA 誘導肝細胞的胰島素阻抗(insulin resistance) 24 五. Corylin 改善肝醣合成和降低糖質新生作用 25 六. Corylin 具有減緩高脂飲食造成的肥胖作用 26 七. Corylin 改善各項代謝相關的生化值,並保護肝臟損傷 26 八. Corylin 抑制肥胖造成的肝脂肪變性 27 九. Corylin具有抑制脂肪酸生成相關mRNA和蛋白值的表達量 27 十. Corylin具有改善高血糖和胰島素阻抗的功用 28 十一. Corylin改善由高脂飲食引起的醣類代謝 29 十二. Corylin減緩肝臟中ROS的過量產生 29 十三. Corylin具有抑制脂肪性肝炎和減緩肝臟纖維化的作用 30 十四. Corylin 活化AMPK 30 十五. Corylin 藉由活化 AMPK 來抑制肝細胞中油滴的累積 31 十六. Corylin 藉由活化 AMPK 改善肝細胞中粒線體活性受損 31 十七. Corylin 藉由活化 AMPK 來抑制肝細胞中 ROS 的產生 32 伍、 討論 33 陸、 附圖 39 圖一、 Corylin 具有抑制由PA誘導的肝細胞中的油滴累積 39 圖二、 Corylin抑制脂肪酸相關蛋白質的增加 40 圖三、 Corylin具有改善粒線體受損的作用 41 圖四、 Corylin具有抑制ROS的產生的作用 42 圖五、 Corylin具有改善肝細胞胰島素阻抗的效果 43 圖六、 Corylin具有改善肝細胞吸收葡萄糖的作用 44 圖七、Corylin 具有改善 PA 誘導的肝醣合成減少和糖質新生作用增加的效 45 圖八、Corylin抑制高脂飲食小鼠的體重增加 46 圖九、Corylin對非酒精性脂肪肝小鼠的肝臟保護作用 47 圖十、 Corylin 有效抑制高脂飲食造成的肝臟油滴累積 48 圖十一、 Corylin有效抑制高脂飲食造成的肝臟脂肪酸生成相關蛋白的表現 49 圖十二、 Corylin 有效抑制高脂飲食造成的胰島素阻抗 50 圖十三、 Corylin 有效改善高脂飲食造成的肝醣合成下降 51 圖十四、 Corylin 有效抑制高脂飲食造成小鼠肝臟活性氧化物(ROS)的表現 52 圖十五、 Corylin 有效抑制高脂飲食造成的肝臟發炎因子相關蛋白的表現 53 圖十六、 Corylin有效抑制高脂飲食造成的小鼠肝臟纖維化 54 圖十七、 Corylin 顯著增加活化的AMPK蛋白質的表達量 55 圖十八、 探討Corylin對AMPK路徑機制的實驗設計圖 56 圖十九、 Corylin 活化AMPK抑制肝細胞油滴的累積 57 圖二十、 Corylin 藉由活化AMPK改善HepG2的粒線體活性 58 圖二十一、 Corylin 藉由活化AMPK抑制HepG2的ROS的產生 60 圖二十二、 Corylin 改善非酒精性脂肪肝疾病機制圖 61 表格一、 高脂飼料成分表 62 柒、 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 棕櫚酸 | zh_TW |
| dc.subject | 非酒精性脂肪肝疾病 | zh_TW |
| dc.subject | 棕櫚酸 | zh_TW |
| dc.subject | 補骨脂寧 | zh_TW |
| dc.subject | 非酒精性脂肪肝疾病 | zh_TW |
| dc.subject | 補骨脂寧 | zh_TW |
| dc.subject | NAFLD | en |
| dc.subject | Corylin | en |
| dc.subject | NAFLD | en |
| dc.subject | AMPK | en |
| dc.subject | ROS | en |
| dc.subject | palmitic acid | en |
| dc.subject | Corylin | en |
| dc.subject | AMPK | en |
| dc.subject | ROS | en |
| dc.subject | palmitic acid | en |
| dc.title | Corylin對於非酒精性脂肪肝疾病的治療作用和相關機制 | zh_TW |
| dc.title | The Therapeutic Effects and the Relative Mechanisms of Corylin on Nonalcoholic Fatty Liver Disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王仰高(Yang-Kao Wang),龔秀妮(Hsiu-Ni Kung) | |
| dc.subject.keyword | 補骨脂寧,非酒精性脂肪肝疾病,棕櫚酸, | zh_TW |
| dc.subject.keyword | Corylin,NAFLD,AMPK,ROS,palmitic acid, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202202259 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-08-16 | - |
| Appears in Collections: | 解剖學暨細胞生物學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1008202214421700.pdf Until 2027-08-16 | 5.56 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
