Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世楠(SHIH-NAN CHEN)
dc.contributor.authorFang-Yu Changen
dc.contributor.author張芳瑜zh_TW
dc.date.accessioned2023-03-19T23:56:47Z-
dc.date.copyright2022-08-22
dc.date.issued2022
dc.date.submitted2022-08-18
dc.identifier.citationBeardsley, R. C., Limeburner, R., Yu, H., & Cannon, G. A. (1985). Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4(1), 57-76. https://doi.org/https://doi.org/10.1016/0278-4343(85)90022-6 Blumsack, S. L., & Gierasch, P. J. (1972). Mars: The Effects of Topography on Baroclinic Instability. Journal of Atmospheric Sciences, 29(6), 1081-1089. https://doi.org/10.1175/1520-0469(1972)029<1081:Mteoto>2.0.Co;2 Brasseale, E., & MacCready, P. (2021). The Shelf Sources of Estuarine Inflow. Journal of Physical Oceanography, 51(7), 2407-2421. https://doi.org/10.1175/jpo-d-20-0080.1 Chant, R. J., Glenn, S. M., Hunter, E., Kohut, J., Chen, R. F., Houghton, R. W., Bosch, J., & Schofield, O. (2008). Bulge Formation of a Buoyant River Outflow. Journal of Geophysical Research: Oceans, 113(C1). https://doi.org/https://doi.org/10.1029/2007JC004100 Chen, S.-N., Chen, C.-J., & Lerczak, J. A. (2020). On Baroclinic Instability over Continental Shelves: Testing the Utility of Eady-Type Models. Journal of Physical Oceanography, 50(1), 3-33. https://doi.org/10.1175/jpo-d-19-0175.1 Csanady, G. T. (1978). The arrested topographic wave. Bulletin of the American Meteorological Society, 58(10), 1135-1135. https://doi.org/10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2 Davis, K. A., Banas, N. S., Giddings, S. N., Siedlecki, S. A., MacCready, P., Lessard, E. J., Kudela, R. M., & Hickey, B. M. (2014). Estuary-enhanced upwelling of marine nutrients fuels coastal productivity in the U.S. Pacific Northwest. Journal of Geophysical Research: Oceans, 119(12), 8778-8799. https://doi.org/https://doi.org/10.1002/2014JC010248 de Boer, G. J., Pietrzak, J. D., & Winterwerp, J. C. (2009). SST observations of upwelling induced by tidal straining in the Rhine ROFI. Continental Shelf Research, 29(1), 263-277. https://doi.org/https://doi.org/10.1016/j.csr.2007.06.011 Garvine, R. W. (1999). Penetration of Buoyant Coastal Discharge onto the Continental Shelf: A Numerical Model Experiment. Journal of Physical Oceanography, 29(8), 1892-1909. https://doi.org/10.1175/1520-0485(1999)029<1892:Pobcdo>2.0.Co;2 Hickey, B. M., Kudela, R. M., Nash, J. D., Bruland, K. W., Peterson, W. T., MacCready, P., Lessard, E. J., Jay, D. A., Banas, N. S., Baptista, A. M., Dever, E. P., Kosro, P. M., Kilcher, L. K., Horner-Devine, A. R., Zaron, E. D., McCabe, R. M., Peterson, J. O., Orton, P. M., Pan, J., & Lohan, M. C. (2010). River Influences on Shelf Ecosystems: Introduction and synthesis. Journal of Geophysical Research: Oceans, 115(C2). https://doi.org/https://doi.org/10.1029/2009JC005452 Isobe, A. (2005). Ballooning of River-Plume Bulge and Its Stabilization by Tidal Currents. Journal of Physical Oceanography, 35(12), 2337-2351. https://doi.org/10.1175/jpo2837.1 Lentz, S. J. (2017). Seasonal warming of the Middle Atlantic Bight Cold Pool. Journal of Geophysical Research: Oceans, 122(2), 941-954. https://doi.org/10.1002/2016jc012201 Masse, A. K. (1990). Withdrawal of shelf water into an estuary: A barotropic model. Journal of Geophysical Research: Oceans, 95(C9), 16085-16096. https://doi.org/https://doi.org/10.1029/JC095iC09p16085 Münchow, A., & Garvine, R. W. (1993). Dynamical properties of a buoyancy-driven coastal current. Journal of Geophysical Research: Oceans, 98(C11), 20063-20077. https://doi.org/https://doi.org/10.1029/93JC02112 Rennie, S. E., Largier, J. L., & Lentz, S. J. (1999). Observations of a pulsed buoyancy current downstream of Chesapeake Bay. Journal of Geophysical Research: Oceans, 104(C8), 18227-18240. https://doi.org/https://doi.org/10.1029/1999JC900153 Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002 Shcherbina, A. Y., & Gawarkiewicz, G. G. (2008). A coastal current in winter: Autonomous underwater vehicle observations of the coastal current east of Cape Cod. Journal of Geophysical Research: Oceans, 113(C7). https://doi.org/https://doi.org/10.1029/2007JC004306 Whitney, M. M., & Garvine, R. W. (2005). Wind influence on a coastal buoyant outflow. Journal of Geophysical Research: Oceans, 110(C3). https://doi.org/https://doi.org/10.1029/2003JC002261 Winant, C. D. (1979). Comments on “the arrested topographic wave”. Journal of Physical Oceanography, 9(5), 1042-1043. https://doi.org/10.1175/1520-0485(1979)009<1042:Coatw>2.0.Co;2 Wu, H., Deng, B., Yuan, R., Hu, J., Gu, J., Shen, F., Zhu, J., & Zhang, J. (2013). Detiding Measurement on Transport of the Changjiang-Derived Buoyant Coastal Current. Journal of Physical Oceanography, 43(11), 2388-2399. https://doi.org/10.1175/jpo-d-12-0158.1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86454-
dc.description.abstract從一些數值研究和少數的實際觀測中可以發現到,當河水注入到陸棚上,於海洋形成沖淡水鋒面結構及後續持續發展的沿岸流同時,沿岸流以外的周邊常能觀察到一與沿岸流流向相反且較弱的速度結構 (後續稱作reverse flow),通常還同時伴隨向岸方向的速度。為了想探討reverse flow與沿岸流間的連結,本研究中透過三維海洋模式ROMS進行改變不同底床坡度、沿岸流流量,以及改變密度差的數值實驗,而在所有的模擬結果中,緊鄰沿岸流邊界的區域皆能成功發展出如前述的reverse flow速度特徵 (v < 0, u > 0)。其中,能發現到跨岸方向的寬度會隨著沿岸流的下游方向越寬,從所有結果的比較也能注意到寬度有隨坡度減緩而變寬的趨勢,而reverse flow強度與沿岸流傳遞速度呈正相關。經分析後發現reverse flow的結構特徵大致上能以 Arrested Topographic Wave (ATW) (Csanady, 1978) 理論做解釋,結果也顯示沿岸流邊界上透過混合而挾帶海水的過程 (entrainment processes) 為驅動reverse flow的主要因素。另外也發現到沿岸流邊界上的海水面梯度量值 (|dζ/dx|),和被挾帶進沿岸流中的體積傳輸成正比,此關係更顯示了朝沿岸流邊界下凹的海水面是由於挾帶海水過程所導致的推論正確性。而應用到實際海岸中,若能取得周邊海水面梯度的觀測值,勢必能以ATW理論重製出reverse flow的海水面及速度結構。 此外,該理論有助於我們了解reverse flow對於單一因素改變下的反應,如寬度受底床坡度影響的關係也可以渦度平衡角度進一步解釋,當我們在沿岸流邊界上固定一相同 dζ/dx,於坡度越陡時,渦管向近岸受擠壓而產生的負渦度趨勢越強,同時則需要較強的正渦度趨勢來維持守恆,理論顯示為由底床應力旋度所產生。設置相同的 dζ/dx 即為在邊界上固定相同的reverse flow速度峰值,因此,所對應reverse flow的底床應力若分布於較窄的寬度上則會使速度梯度 (dv/dx) 較大,等同於產生較強的正渦度趨勢。zh_TW
dc.description.abstractPrior modeling studies and limited observations have found that, as riverine sources enter continental shelves to form buoyant plumes and coastal currents, there often exists a weak current seaward of the buoyant outflows. This weak current flows primarily in the direction opposing the buoyant outflows (termed reverse flow hereafter) and is onshore-directed. To explore the linkage between the reverse flow and coastal current, we conduct numerical experiments using ROMS, with different bottom slopes, river discharges, and density contrasts. In all experiments, a robust reverse flow, characterized by upshelf and onshore velocity (v < 0, u > 0) is observed along the coastal current boundary and further downshelf. The cross-shore width of the reverse flow increases with downshelf distance. Among the cases, the maximum reverse flow width increases as the bottom slope decreases, whereas the reverse flow magnitude is positively correlated with the coastal current propagation speed. We find that the reverse flow structure can largely be explained by the theory of Arrested Topographic Wave (ATW) (Csanady, 1978), and there are indications that the reverse flow is driven by entrainment processes. A peak sea-level gradient (|dζ/dx|) is found at the seaward boundary of coastal current, with its magnitude scaling positively with the volume entrained into the coastal current. This suggests that the negative sea-level anomaly at the boundary is generated by coastal current entrainment. Using the observed dζ/dx as a forcing, the ATW solution can reproduce the spatial distribution of sea-level and velocity in the reverse flow. Furthermore, the sensitivity of reverse flow width to bottom slope can be interpreted in terms of vorticity balance between bottom stress curl and vortex stretching due to onshore flow across sloping bottom (i.e. the topographic beta effect).en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:56:47Z (GMT). No. of bitstreams: 1
U0001-0508202216511600.pdf: 3133509 bytes, checksum: 57e844f04c91fadccf2eba4bb31021ae (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口委審定書 i 致 謝 ii 摘 要 iii Abstract v 目 錄 vii 圖目錄 viii 表目錄 xiii 第一章 緒論 1 第二章 理論背景與研究方法 7 2.1 模式設定與實驗設計 7 2.2 Arrested Topographic Wave理論 (ATW) 12 第三章 結果與討論 17 3.1 數值模式結果與ATW理論之比較 17 3.2 reverse flow寬度 21 3.3 reverse flow跨岸方向速度結構 23 3.4 海底底床坡度變化對寬度造成影響之解釋 27 3.5 reverse flow產生和沿岸流之間關係的推測 30 3.6 海水分層對於reverse flow之影響 35 第四章 總結 37 Reference 39
dc.language.isozh-TW
dc.subject浮力驅動沿岸流zh_TW
dc.subject垂直混合zh_TW
dc.subject沿岸流挾帶海水zh_TW
dc.subject地形效應zh_TW
dc.subject浮力驅動沿岸流zh_TW
dc.subject垂直混合zh_TW
dc.subject沿岸流挾帶海水zh_TW
dc.subject地形效應zh_TW
dc.subjectvertical mixingen
dc.subjectbuoyant coastal currenten
dc.subjectvertical mixingen
dc.subjectcoastal current entrainmenten
dc.subjecttopographic effecten
dc.subjectbuoyant coastal currenten
dc.subjectcoastal current entrainmenten
dc.subjecttopographic effecten
dc.title隨沿岸流所驅動的陸棚環流:挾帶過程與Arrested Topographic Wavezh_TW
dc.titleAmbient shelf circulation driven by buoyant coastal currents: the roles of entrainment and the Arrested Topographic Waveen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.advisor-orcid陳世楠(0000-0002-1593-3044)
dc.contributor.oralexamcommittee張明輝(MING-HUEI CHANG),陳佳琳(Jia-Lin Chen)
dc.contributor.oralexamcommittee-orcid張明輝(0000-0002-6409-7652)
dc.subject.keyword浮力驅動沿岸流,垂直混合,沿岸流挾帶海水,地形效應,zh_TW
dc.subject.keywordbuoyant coastal current,vertical mixing,coastal current entrainment,topographic effect,en
dc.relation.page41
dc.identifier.doi10.6342/NTU202202101
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
dc.date.embargo-lift2024-08-18-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
U0001-0508202216511600.pdf3.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved