請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86446完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯彥廷(Yen-Ting Ko) | |
| dc.contributor.author | Yu-Wen Fang | en |
| dc.contributor.author | 方昱文 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:56:19Z | - |
| dc.date.copyright | 2022-08-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-18 | |
| dc.identifier.citation | Aki, K., & Richards, P.G. (2002). Quantitative Seismology, University Science Books. Brodic, B., Malehmir, A., Pugin, A., & Maries, G. (2018). Three-component seismic land streamer study of an asker architecture through S- and surface-wave imaging. Geophysics, 83, B339–B353. Deng, J. M., Wang, T. K., Chen, T. R., Lee, C. S., & Liu, C. S. (2014). Crustal Velocity Structures Imaged from Four-Component OBS Data Across the Southern Gagua Ridge in the Western Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences. 25. 755. 10.3319/TAO.2014.08.28.01(T). Fontaine, F.R., Barruol, G., Kennett, B.L.N., Bokelmann, G.H.R., & Reymond, D. (2009). Upper mantle anisotropy beneath Australia and Tahiti from P wave polarization: implications for real-time earthquake location, J. Geophys. Res., 114, B03306, doi:10.1029/2008JB005709. Hannemann, K., Krüger, F., Dahm, T., & Lange, D. (2016). Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor, Geophys. J. Int., 207, 1796–1817. Kuo, C. H., Cheng, D. S., Hsieh, H. H., Chang, T. M., Chiang, H. J., Lin, C. M., & Wen, K. L. (2009), Comparison of three different methods in investigating shallow shear-wave velocity structures in Ilan, Taiwan, Soil Dynamics and Earthquake Engineering, 29(1), 133-143. Kuo, B. Y., Crawford, W. C., Webb, S. C., Lin, C. R., Yu, T. C., & Chen, L. (2015). Faulting and hydration of the upper crust of the SW Okinawa Trough during continental rifting: Evidence from seafloor compliance inversion, Geophys. Res. Lett., 42, 4809–4815. Kuo, Y. S., Weng, T. L., Hsu, H. T., Chang, H. W., Lin, Y. C., Chang, S. C., Chuang, Y.-J., Tseng, Y.H., & Wong, Y.T. (2021). A Methodology for Estimating the Position of the Engineering Bedrock for Offshore Wind Farm Seismic Demand in Taiwan. Energies, 14, 2474. https://doi.org/10.3390/en14092474 Kuo, Y. S., Chong, K. J., Chang, S. C., Chai, J. F., & Hsu, H. T. (2021). A Hybrid Method to Evaluate Soil Liquefaction Potential of Seabed at Offshore Wind Farm in Taiwan. Energies, 14, 1853. https://doi.org/10.3390/en14071853 Lee, C. T., & Tsai, B. R. (2008). Mapping Vs30 in Taiwan. Terrestrial Atmospheric and Oceanic Sciences - TERR ATMOS OCEANS CI.19.10.3319/TAO.2008.19.6.671(PT). Park, S., & Ishii, M. (2018). Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis, Geophys. J. Int., 213, 1559-1571. Park, S., Tsai, V. C., & Ishii, M. (2019). Frequency‐Dependent P Wave Polarization and Its Subwavelength Near‐Surface Depth Sensitivity, Geophy. Res. Lett., 46, 14337-14384. Shearer, P. M. (1999). Introduction to seismology. Cambridge: Cambridge University Press. Wang, T. K., Yang, B. J., Deng, J. M., & Lee, C. S. (2010). Seismic imaging of gas hydrates in the northernmost South China Sea, Mar Geophys Res., 31, 59-76. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (3rd ed.). Academic Press. Wang, T. K., Deng, J. M., Wang, J., Cheng, Y. H., Xie, Z. Z., & Zhang, Y. F. (2020). P-wave velocity structures of the crust across the southern Taiwan Strait imaged by using air-gun data recorded from ocean-bottom seismometers, Mar Geophys Res., 41, doi:10.1007/s11001-020-09410-0. 郭俊翔、林哲民、謝宏灝、溫國樑 (2011),近地表剪力波速特性,國家地震工程研究中心簡訊,頁3。 楊懿丞、許鶴瀚、吳俊鼐、溫修敏、陳姿婷、連政佳、洪瑋廷、劉家瑄、Yang, Eason Yi-cheng、Hsu, Ho-han、Wu, Jyun-nai、Wun, Siou-min、Chen, Tzu-ting、Lien, Cheng-chia、Hung, Wei-ting、Liu, Char-shine (2020),地形與震測地層剖面分析於離岸風電場址調查之應用,臺灣能源期刊,頁253-268。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86446 | - |
| dc.description.abstract | 由於瞭解地殼的速度結構對於地震危害度分析的評估相當重要,而地震危害度分析的重要參數之一是近地表的S波速度。當有一地震發生時會產生體波,由於S波的振幅較P波的振幅大,導致S波造成的破壞通常比P波造成的破壞更為嚴重。除此之外,近年來,台灣政府開始全力支持可再生能源或相關產業,離岸風電將會是未來的主要能源之一,因此為確保架設離岸風電機組支撐結構的安全性,了解其風場之S波速度結構以確保海床穩定性具有相當重要意義。現今,常用來獲得淺層速度構造的方法為震測以及鑽井,但其缺點為耗時、耗人力,故如要獲得大範圍之速度構造會較為困難。因此Park & Ishii (2018) 發展出體波極化方法為估計淺部地殼速度結構提供了一個簡單有效的方法。此方法顯示出P波極化方向只會受到地層的S波速度影響,而S波極化方向則同時受到地層的P波和S波速度影響。本研究將P波極化方法應用於佈放在沖繩海槽的海底地震儀陣列 (ocean-bottom seismometers, OBS)、琉球島弧的島上測站和日本九州的F-net陸上測站,以估計淺部地殼的S波速度。初步結果顯示,因為OBS主要位於海床上,而海床的材質是屬於較鬆軟、含水量較高,故OBS下方的地層平均S波速度小於島/陸上測站下方地層的平均S波速度。另外,S波速度隨濾波頻率降低而增加,顯示波速隨深度增加。本研究中所獲得之結果可對應到地表到測站下方深度大約100 m處之地層的平均S波速度。因此,未來可以依照不同濾波頻段去加以討論,以獲得不同深度範圍之地層的平均S波速度,進而對地震危害度分析以及海床穩定性評估提供更詳細之參考依據。 | zh_TW |
| dc.description.abstract | A thorough understanding of crustal structures is crucial for earthquake hazard assessments. One of the essential factors in seismic hazard analysis is shear wave velocity near the surface. When an earthquake occurs, the damage caused by the shear wave is usually more severe than that caused by P waves because of its large amplitude and the shear motions. Moreover, offshore wind energy is one of the main future energy because the government of Taiwan supports renewable energy or related industries. It is important to assess the offshore wind farms seismic forces reasonably in order to ensure the safety and stability of the offshore wind turbine support structures. There have been many methods developed to estimate S-wave velocity. A direct approach is to drill. However, drilling is expensive and not practical. A newly developed body-wave polarization method provides an inexpensive way to explore shallow crustal structures. The P-wave polarization direction has no sensitivity to P-wave velocity but only S-wave velocity. In contrast, the S-wave polarization direction is sensitive to both P-wave and S-wave velocities. Thus, we apply the P-wave polarization method to ocean-bottom seismometers (OBS), island stations on the Okinawa trough (OT), and F-net stations in Kyushu, Japan, to estimate the S-wave velocity of the shallow crust. The preliminary results demonstrate that the average S-wave velocity calculated by OBS is lower than those calculated by inland stations. The low S-wave speed may imply that OBS is mainly seated on soft rich-hydrous seafloor sediments. In addition, the results indicate that the average S-wave velocity from the surface to depth of 100 m below the stations. In the future, it can be discussed according to different filters to obtain different depth ranges to provide a more detailed reference for seismic hazard analysis and seabed stability assessment. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:56:19Z (GMT). No. of bitstreams: 1 U0001-1708202214141400.pdf: 4192552 bytes, checksum: d36b4cbdb86a3fa0a9355d9101c73d34 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 vi 圖表目錄 viii 第一章 緒論 1 1.1 了解淺部地殼S波速度之重要性 1 1.1.1 陸地上 3 1.1.2 海床上 5 第二章 地震波形資料 6 2.1 研究區域 6 2.2 資料來源 7 2.3 資料處理流程 8 第三章 研究方法 11 3.1 P波極化方法 (P-wave polarization method) 11 3.2 P波極化方向角度量測 15 3.3 質點運動軌跡之線性程度 (Eigenratio) 16 3.4 波線參數以及兩層外加沉積層 18 3.5 資料篩選 20 第四章 結果 22 4.1 OBS 22 第五章 討論 28 5.1 時間窗長度選擇 28 5.2 高頻濾波頻段 30 5.3 與前人結果比較 35 5.4 合成波測試 36 第六章 結論 43 參考文獻 44 附錄 46 A.1 P波極化方向量測資料 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | 沖繩海槽 | zh_TW |
| dc.subject | 淺部地殼 | zh_TW |
| dc.subject | 地殼結構 | zh_TW |
| dc.subject | S波速度 | zh_TW |
| dc.subject | 淺部地殼 | zh_TW |
| dc.subject | 體波 | zh_TW |
| dc.subject | 地殼結構 | zh_TW |
| dc.subject | S波速度 | zh_TW |
| dc.subject | 沖繩海槽 | zh_TW |
| dc.subject | 體波 | zh_TW |
| dc.subject | S-wave velocity | en |
| dc.subject | shallow crust | en |
| dc.subject | crustal structures | en |
| dc.subject | Okinawa Trough | en |
| dc.subject | Body-wave | en |
| dc.subject | Okinawa Trough | en |
| dc.subject | Body-wave | en |
| dc.subject | S-wave velocity | en |
| dc.subject | crustal structures | en |
| dc.subject | shallow crust | en |
| dc.title | 利用P波極化方法估算沖繩海槽淺部地殼S波速度構造 | zh_TW |
| dc.title | Estimation of S-wave velocities of the shallow crust of the Okinawa Trough using P-wave polarization method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 郭本垣(Ban-Yuan Kuo) | |
| dc.contributor.oralexamcommittee | 黃信樺(Hsin-Hua Huang),簡珮如(Pei-Ru Jian) | |
| dc.subject.keyword | 沖繩海槽,體波,S波速度,地殼結構,淺部地殼, | zh_TW |
| dc.subject.keyword | Okinawa Trough,Body-wave,S-wave velocity,crustal structures,shallow crust, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU202202502 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-19 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202214141400.pdf | 4.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
