請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86435完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人 | zh_TW |
| dc.contributor.advisor | Jer-Ren Yang | en |
| dc.contributor.author | 蕭廷融 | zh_TW |
| dc.contributor.author | Ting-Jung Hsiao | en |
| dc.date.accessioned | 2023-03-19T23:55:39Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2022-08-29 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] O.P. Pfeiffer, H. Liu, L. Montanelli, M.I. Latypov, F.G. Sen, V. Hegadekatte, E.A. Olivetti, E.R. Homer, Aluminum alloy compositions and properties extracted from a corpus of scientific manuscripts and US patents, Scientific Data 9(1) (2022) 128.
[2] A. Poznak, D. Freiberg, P. Sanders, Chapter 10 - Automotive Wrought Aluminium Alloys, in: R.N. Lumley (Ed.), Fundamentals of Aluminium Metallurgy, Woodhead Publishing2018, pp. 333-386. [3] D.M. Liu, B.Q. Xiong, F.G. Bian, Z.H. Li, X.W. Li, Y.G. Zhang, F. Wang, H.W. Liu, Quantitative study of precipitates in an Al-Zn-Mg-Cu alloy aged with various typical tempers, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 588 (2013) 1-6. [4] Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, M. Guo, L. Cao, Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios, Journal of Materials Science & Technology 85 (2021) 106-117. [5] D.K. Xu, P.A. Rometsch, N. Birbilis, Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part II. Microstructure and mechanical properties, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 534 (2012) 244-252. [6] D.K. Xu, P.A. Rometsch, N. Birbilis, Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part I. Characterisation of constituent particles and overheating, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 534 (2012) 234-243. [7] J.M. Runge, A Brief History of Aluminum and Its Alloys, in: J.M. Runge (Ed.), The Metallurgy of Anodizing Aluminum: Connecting Science to Practice, Springer International Publishing, Cham, 2018, pp. 1-63. [8] J.R. Davis, Alloying: Understanding the Basics, 2001 ASM International2013. [9] J.G. Kaufman, Introduction to Aluminum Alloys and Tempers, ASM International2013. [10] M. Johannaber, M. Espig, Determination of Weight Elasticity of Fuel Economy for ICE, Hybrid and Fuel Cell Vehicles, SAE International, 2007. [11] J. Hirsch, Aluminium in innovative light-weight car design, Materials Transactions, 2011, pp. 818-824. [12] M.K. Kallas, Multi-directional unibody casting machine for a vehicle frame and associated methods, Tesla Inc, Worldwide, 2016. [13] G. Guiglionda, H. Ribes, D. Daniel, Sheet made of aluminum alloy for the structure of a motor vehicle body, Constellium Neuf-Brisach, Worldwide, 2015. [14] Y.G. Liao, X.Q. Han, M.X. Zeng, M. Jin, Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy, Materials & Design 66 (2015) 581-586. [15] X. Fang, Y. Du, M. Song, K. Li, C. Jiang, Effects of Cu content on the precipitation process of Al-Zn-Mg alloys, Journal of Materials Science 47(23) (2012) 8174-8187. [16] N.Q. Chinh, J. Lendvai, D.H. Ping, K. Hono, The effect of Cu on mechanical and precipitation properties of Al–Zn–Mg alloys, Journal of Alloys and Compounds 378(1) (2004) 52-60. [17] J. Liu, P. Yao, N.Q. Zhao, C.S. Shi, H.J. Li, X. Li, D.S. Xi, S. Yang, Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys, Journal of Alloys and Compounds 657 (2016) 717-725. [18] H. Zhao, Y.Q. Chen, B. Gault, S.K. Makineni, D. Ponge, D. Raabe, (Al, Zn)(3)Zr dispersoids assisted eta ' precipitation in anAl-Zn-Mg-Cu-Zr alloy, Materialia 10 (2020) 6. [19] G.C. Smith, AGE HARDENING OF METALS, Progress in Metal Physics 1 (1949) 163-&. [20] X.W. Li, B.Q. Xiong, Y.A. Zhang, C. Hua, F. Wang, B.H. Zhu, H.W. Liu, Effect of one-step aging on microstructure and properties of a novel Al-Zn-Mg-Cu-Zr alloy, Science in China Series E-Technological Sciences 52(1) (2009) 67-71. [21] T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15(1) (1999) 30-36. [22] M.F. Ashby, H.U.C.M.D.O. ENGINEERING, A. PHYSICS., The Theory of the Critical Shear Stress and Work Hardening in Dispersion-hardened Crystals, Defense Technical Information Center1966. [23] E. Orowan, Symposium on internal stresses in metals and alloys, Institute of Metals, London 451 (1948). [24] X.Z. Li, V. Hansen, J. Gjonnes, L.R. Wallenberg, HREM study and structure modeling of the eta ' phase, the hardening precipitates in commercial Al-Zn-Mg alloys, Acta Materialia 47(9) (1999) 2651-2659. [25] G. Sha, A. Cerezo, Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Materialia 52(15) (2004) 4503-4516. [26] K. Wen, Y.Q. Fan, G.J. Wang, L.B. Jin, X.W. Li, Z.H. Li, Y.G. Zhang, B.Q. Xiong, Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers, Materials & Design 101 (2016) 16-23. [27] A. Guinier, Structure of age-hardened aluminium-copper alloys, Nature 142 (1938) 569-570. [28] G.D. Preston, Structure of age-hardened aluminium-copper alloys, Nature 142 (1938) 570-570. [29] R.J. Rioja, D.E. Laughlin, The early stages of GP zone formation in naturally aged Ai-4 wt pct cu alloys, Metallurgical Transactions A 8(8) (1977) 1257-1261. [30] Y.-C. Chang, Crystal structure and nucleation behavior of (111) precipitates in an aluminum-3.9copper-0.5magnesium-0.5silver (wt. percent) alloy, Carnegie Mellon University, Ann Arbor, 1992, p. 242. [31] H. Löffler, I. Kovács, J. Lendvai, Decomposition processes in Al-Zn-Mg alloys, Journal of Materials Science 18(8) (1983) 2215-2240. [32] K. Stiller, P.J. Warren, V. Hansen, J. Angenete, J. Gjonnes, Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 degrees and 150 degrees C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 270(1) (1999) 55-63. [33] J.Z. Liu, R. Hu, J.L. Zheng, Y.D. Zhang, Z.G. Ding, W. Liu, Y.T. Zhu, G. Sha, Formation of solute nanostructures in an Al-Zn-Mg alloy during long-term natural aging, Journal of Alloys and Compounds 821 (2020) 10. [34] E. Thronsen, J. Frafjord, J. Friis, C.D. Marioara, S. Wenner, S.J. Andersen, R. Holmestad, Studying GPI zones in Al-Zn-Mg alloys by 4D-STEM, Mater. Charact. 185 (2022) 111675. [35] T.F. Chung, Y.L. Yang, B.M. Huang, Z.S. Shi, J.G. Lin, T. Ohmura, J.R. Yang, Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy, Acta Materialia 149 (2018) 377-387. [36] L.K. Berg, J. Gjonnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, GP-zones in Al-Zn-Mg alloys and their role in artificial aging, Acta Materialia 49(17) (2001) 3443-3451. [37] J.H. Auld, S.M. Cousland, STRUCTURE OF THE METASTABLE eta prime PHASE IN ALUMINIUM-ZINC MAGNESIUM ALLOYS, J Aust Inst Met 19(3) (1974) 194-199. [38] X. Hou, G. Ma, P. Bai, F. Lang, X. Zhao, F. Liu, Y. Xing, Investigation of the Coherent Strain Evolution of the η' phase in Al–Zn–Mg–Cu alloys via scanning transmission electron microscopy, Journal of Alloys and Compounds 856 (2021) 158111. [39] C. Wolverton, Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys, Acta Materialia 49(16) (2001) 3129-3142. [40] G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy, Acta Materialia 57(10) (2009) 3123-3132. [41] T.-F. Chung, Y.-L. Yang, C.-L. Tai, M. Shiojiri, C.-N. Hsiao, C.-S. Tsao, W.-C. Li, Z. Shi, J. Lin, H.-R. Chena, J.-R. Yang, HR-STEM investigation of atomic lattice defects in different types of η precipitates in creep-age forming Al–Zn–Mg–Cu aluminium alloy, Materials Science and Engineering: A 815 (2021) 141213. [42] P.H. Zhao, X.L. Wu, K.Y. Gao, S.P. Wen, L. Rong, H. Huang, W. Wei, Z.R. Nie, Effect of Zn/Mg ratio on microstructure and mechanical properties of Al-Zn-Mg alloys, Materials Letters 312 (2022) 4. [43] X.B. Yang, J.H. Chen, J.Z. Liu, F. Qin, J. Xie, C.L. Wu, A high-strength AlZnMg alloy hardened by the T-phase precipitates, Journal of Alloys and Compounds 610 (2014) 69-73. [44] Y.X. Geng, Q. Song, Z.R. Zhang, Y.L. Pan, H.X. Li, Y. Wu, H.H. Zhu, D. Zhang, J.S. Zhang, L.Z. Zhuang, Quantifying early-stage precipitation strengthening of Al-Mg-Zn(-Cu) alloy by using particle size distribution, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 839 (2022) 13. [45] L. Stemper, B. Mitas, T. Kremmer, S. Otterbach, P.J. Uggowitzer, S. Pogatscher, Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additions, Materials & Design 181 (2019) 107927. [46] G. Bergman, Waugh, J. L. T., Pauling, L.,, The crystal structure of the metallic phase Mg32(Al, Zn)49, Acta Crystallographica 10 (1957 ) 5. [47] R. Ghiaasiaan, B.S. Amirkhiz, S. Shankar, Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 698 (2017) 206-217. [48] J. Luo, H.Y. Luo, S.J. Li, R.Z. Wang, Y. Ma, Effect of pre-ageing treatment on second nucleating of GPII zones and precipitation kinetics in an ultrafine grained 7075 aluminum alloy, Materials & Design 187 (2020) 14. [49] J. Gjonnes, C.J. Simensen, AN ELECTRON MICROSCOPE INVESTIGATION OF MICROSTRUCTURE IN AN ALUMINUM-ZINC-MAGNESIUM ALLOY, Acta Metallurgica 18(8) (1970) 881-&. [50] Y.X. Zhao, H. Li, Y. Liu, Y.C. Huang, The microstructures and mechanical properties of a highly alloyed Al-Zn-Mg-Cu alloy: The role of Cu concentration, Journal of Materials Research and Technology-Jmr&T 18 (2022) 122-137. [51] T.F. Chung, M. Kawasaki, P. Wang, K. Nishio, M. Shiojiri, W.C. Li, C.N. Hsiao, J.R. Yang, Atomic-resolution energy dispersive X-ray spectroscopy mapping of eta precipitates in an Al-Mg-Zn-Cu alloy, Mater. Charact. 166 (2020) 8. [52] S.C. Pengxuan Dong, Kanghua Chen, Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy, Journal of Alloys and Compounds 788 (2019) 9. [53] M.M. B. Sarkar, E. Starke, The effect of copper content and heat treatment on the stress corrosion characteristics of Al-6Zn-2Mg-X Cu alloys, Metall. Mater. Trans 12 (1981) 5. [54] F.-S. Lin, E.A. Starke, The effect of copper content and degree of recrystallization on the fatigue resistance of 7XXX-type aluminum alloys II. Fatigue crack propagation, Materials Science and Engineering 43(1) (1980) 65-76. [55] G.F. Q. Meng, Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys, J. Electrochem. Soc. 151 (2004). [56] E.A.S.J. F.-S. Lin, The effect of copper content and degree of recrystal- lization on the fatigue resistance of 7XXX-type aluminum alloys II. Fatigue crack propagation, Mater. Sci. Eng. 43 (1980) 12. [57] E.S. R.Sanders, The effect of intermediate thermo mechanical treatments on the fatigue properties of a 7050 aluminum alloy, Metall. Mater. Trans. 9 (1978) 14. [58] A.D. T. Marlaud, F. Bley, W. Lefebvre, B. Baroux, Influence of alloy composition and heat treatment on precipitate composition in AlZnMgCu alloys, Acta Mater. 58 (2010) 13. [59] T. Malis, S.C. Cheng, R.F. Egerton, EELS log-ratio technique for specimen-thickness measurement in the TEM, Journal of Electron Microscopy Technique 8(2) (1988) 193-200. [60] K. Iakoubovskii, K. Mitsuishi, Y. Nakayama, K. Furuya, Thickness measurements with electron energy loss spectroscopy, Microsc Res Tech 71(8) (2008) 626-31. [61] H.-R. Zhang, R.F. Egerton, M. Malac, Local thickness measurement through scattering contrast and electron energy-loss spectroscopy, Micron 43(1) (2012) 8-15. [62] Fiji. https://imagej.net/software/fiji/, 2022 (accessed 4.1.2022). [63] P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, Materials Science and Engineering: A 529 (2011) 62-73. [64] R.K. Gupta, A. Deschamps, M.K. Cavanaugh, S.P. Lynch, N. Birbilisa, Relating the Early Evolution of Microstructure with the Electrochemical Response and Mechanical Performance of a Cu-Rich and Cu-Lean 7xxx Aluminum Alloy, Journal of the Electrochemical Society 159(11) (2012) C492-C502. [65] D.M. Liu, B.Q. Xiong, F.G. Bian, Z.H. Li, X.W. Li, Y.G. Zhang, Q.S. Wang, G.L. Xie, F. Wang, H.W. Liu, Quantitative study of nanoscale precipitates in Al-Zn-Mg-Cu alloys with different chemical compositions, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 639 (2015) 245-251. [66] Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M.J. Starink, P.A. Rometsch, Analysis of age hardening precipitates of Al-Zn-Mg-Cu alloys in a wide range of quenching rates using small angle X-ray scattering, Materials & Design 142 (2018) 259-267. [67] H. Aboulfadl, J. Deges, P. Choi, D. Raabe, Dynamic strain aging studied at the atomic scale, Acta Materialia 86 (2015) 34-42. [68] W.A. Curtin, D.L. Olmsted, L.G. Hector, A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys, Nature Materials 5(11) (2006) 875-880. [69] T.H. Courtney, Mechanical Behavior of Materials: Second Edition, Waveland Press2005. [70] Y. Dai, L. Yan, J. Hao, Review on Micro-Alloying and Preparation Method of 7xxx Series Aluminum Alloys: Progresses and Prospects, Materials 15(3) (2022) 1216. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86435 | - |
| dc.description.abstract | 本研究聚焦於Al-Zn-Mg-Cu鋁合金之顯微結構對於機械性質的影響。實驗比較不同的固溶熱處理,以及不同溫度的人工時效下,合金顯微結構與機械性質之改變。並以晶體結構學為基礎,建立電子顯微鏡影像之奈米級析出物量化方法,連結材料之顯微結構與機械性質。研究之兩種材料皆被歸類為AA7075鋁合金,分別為Al-5.98Zn-2.86Mg-1.61Cu (7075-LCu)以及Al-5.98Zn-2.83Mg-1.98Cu (7075-HCu)鋁合金,兩者主要差異為Cu含量。
本研究包含合金材料在取得階段,以及熱處理前後的顯微組織以及機械性質。熱處理研究範圍包含固溶熱處理,自然時效以及人工時效,即工業上所稱之T4以及T6製程。 於熱處理前階段(即材料取得階段),本研究以微差式掃描量熱法及場發射電子微探儀發現7075-LCu與7075-HCu之二次相組成有明顯差異,並據此設計多段式固溶熱處理以防止初熔(incipient melting) 現象的發生,實驗結果發現多段式持溫的熱處理相較於單一溫度熱處理,可在大幅降低初熔的情況下,有效將二次相固溶回到基地,同時提升合金之延展性約20%。 自然時效階段,本研究發現兩種合金皆可在一週之內硬度大幅提升75%,根據穿透式電子顯微鏡觀察,並結合拉伸結果以及小角度X-ray散射實驗分析,得知此強化應為固溶原子團的析出所貢獻。 在人工時效階段,本研究分別就100、120、140以及160 °C之0 – 24 小時內找出尖峰時效,並針對所有尖峰時效的奈米級析出物,進行電子顯微影像進行量化統計,以及機械性質之量測,建立析出物與機械性質之連結。研究結果發現機械形質與析出物的兩個因子相關,分別是尺寸與密度。研究發現,在490 °C固溶熱處理30分鐘後,後對兩種材料而言,最佳的人工時效條件皆為120 °C持溫 24 小時。此時破斷強度可分別達 623 MPa (7075-LCu)以及632 MPa (7075-HCu)。η' 相析出物的厚度則分別為2.15奈米 (7075-LCu)以及2.04奈米 (7075-HCu),而密度分別為3.27×1017 cm-3以及3.52×1017 cm-3。實驗結果可與材料科學的cutting through 與Orowan looping理論機制相互呼應。 針對Al-Zn-Mg-Cu鋁合金之主要強化相之一η' 相,本研究發現其粒徑可成長到10 nm,厚度可達到5 nm而尚未轉變成η (MgZn2)相,並透過STEM-EDX結果分析推測Cu元素在成長過程逐漸擴散進入η' 相中。在相同熱處理溫度以及時間下,平均而言,η'以及η析出物在7075-HCu鋁合金較7075-LCu鋁合金中之成長行為緩和,機械性質也較佳。 | zh_TW |
| dc.description.abstract | This research focused on the relation between the microstructure and the mechanical properties in the Al-Zn-Mg-Cu aluminum alloys. Different solid solution treatments and artificial ageing treatments were designed, and the consequent microstructures and mechanical properties were further analyzed. The mechanical properties were found to be related to the size and the number densities of the precipitates. This finding corresponds to the cutting through-Orowan looping theorem.
Based on the crystal structure, a method for quantifying nanoscale precipitates in electron microscopy images was established in this study. This method was applied to require the information of size and number density of the major precipitates, η', in the AA7075 alloys. The two studied aluminum alloys were both AA7075 alloys. The main difference between the two was the Cu content. They were Al-5.98Zn-2.86Mg-1.61Cu (7075-LCu) and Al-5.98Zn-2.83Mg-1.98Cu (7075-HCu) aluminum alloys, respectively. The heat treatments for the alloys included solution heat treatment, natural ageing (NA) and artificial ageing, known as the T4 and T6 processes in the industry. In the stages before and after solution heat treatment, differential scanning calorimetry (DSC) and an electron probe micro analyzer (EPMA) were used to characterize the secondary phases of 7075-LCu and 7075-HCu. This study found a significant difference in the major secondary phases of the two alloys. Solid solution treatments with special steps were designed based on this finding. The stepped solid solution treatments greatly reduced the phenomenon of incipient melting and effectively dissolved the secondary phases back into the Al matrix. Compared with the single-step solution treatment, the designed stepped solution treatments improved the ductility of the alloy by 20%. In the NA stage, this study found that the hardnesses of both alloys could be increased by 75% within one week. According to observations by transmission electron microscope (TEM), analysis of tensile tests, and analysis of small angle X-ray scattering (SAXS), this strengthening effect is contributed by solutes smaller than 2 nm in radius, which form during quenching and NA. In the artificial ageing stage, in this study, peak ageing conditions were determined within 24 hours at 100, 120, 140, and 160 °C, respectively, and electron microscopy images of nano-scale precipitates were analyzed for all peak ageing conditions. Measurements were performed to establish a link between the precipitates and mechanical properties. In the present work, the average size and the number density of the η' precipitates were found to correlate with the mechanical properties of the Al-Zn-Mg-Cu alloys. The best ageing treatment for both studied alloys is artificial ageing at 120 °C for 24 h, which produces strengths of 623 MPa for 7075-LCu and 632 MPa for 7075-HCu, respectively. Correspondingly, the average thicknesses of η' precipitates are 2.15 nm (7075-LCu) and 2.04 nm (7075-HCu), and the average number densities of η' precipitates are 3.27×1017 cm-3 and 3.52×1017 cm-3, respectively. Regarding the η' phase, the major strengthening phase of Al-Zn-Mg-Cu aluminum alloys, this study found that the diameter could grow to 10 nm and the thickness could reach 5 nm without the particle transforming into the η (MgZn2) phase. STEM-EDX results suggested that Cu gradually diffused into the η' phase during the growth process, leading to Cu-depleted regions around the η'/η precipitates. In addition, it was also found that, with the same heat treatment temperature and time, the growth behavior of η' in 7075-HCu aluminum alloys was milder than that in 7075-LCu aluminum alloys, and the mechanical properties of the samples were also better. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:55:39Z (GMT). No. of bitstreams: 1 U0001-1908202212310100.pdf: 22989244 bytes, checksum: ef20dc96e21d7cc2d7d4abcf1256fd04 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 IV ABSTRACT VI CONTENTS IX LIST OF FIGURES XI LIST OF TABLES XVIII CHAPTER 1 GENERAL INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 TYPES OF ALUMINUM ALLOYS, HEAT TREATMENT AND APPLICATION 3 2.2 ALLOY ELEMENTS IN AA7075 ALUMINUM ALLOYS 8 2.3 PRECIPITATION HARDENING AND HEAT TREATMENT 9 2.3.1 Precipitation hardening and AA7075 aluminum alloys 9 2.3.2 Mechanism of precipitation hardening 13 2.4 STRENGTHENING PRECIPITATES IN AA7075 ALUMINUM ALLOYS 16 2.4.1 General introduction about precipitates 16 2.4.2 GPI and GPII zones 17 2.4.3 η' and η precipitates 24 2.4.4 T' and T precipitates 28 2.4.5 The formation sequence of precipitates 30 2.5 QUANTIFYING PRECIPITATES IN TEM IMAGES 31 2.6 EFFECT OF ADDING CU TO AL-ZN-MG-CU ALUMINUM ALLOYS 32 2.7 IMPROVED SOLID SOLUTION HEAT TREATMENT AND SECONDARY PHASES 40 CHAPTER 3 EXPERIMENT PROCEDURES AND ANALYSIS METHODS 43 3.1 MATERIAL 43 3.2 HEAT TREATMENTS 43 3.3 TRANSMISSION ELECTRON MICROSCOPE (TEM) AND SCANNING TEM (STEM) 44 3.3.1 Bright field and dark field images 44 3.3.2 High resolution transmission electron microscopy (HRTEM) 45 3.3.3 Energy-dispersive X-ray spectroscopy (EDX) 45 3.3.4 High angle annular dark field (HAADF) 45 3.3.5 Electron energy loss spectrum (EELS) 46 3.4 STATISTIC SOFTWARE (FIJI) 47 3.5 SCANNING ELECTRON MICROSCOPE (SEM) 47 3.6 ELECTRON BACK SCATTERED DIFFRACTION (EBSD) 48 3.7 HARDNESS TEST 48 3.8 TENSILE TEST 48 3.9 SMALL ANGEL X-RAY SCATTERING (SAXS) 50 3.10 DIFFERENTIAL SCANNING CALORIMETRY (DSC). 51 3.11 ELECTRON PROBE MICRO ANALYZER (EPMA) 51 CHAPTER 4 EFFECT OF THE DIFFERENT COMPOSITION OF CU ON THE NANOSCALE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AA7075 ALUMINUM ALLOYS 52 4.1 INTRODUCTION OF CHAPTER 4 52 4.2 AS-RECEIVED, SOLID SOLUTION TREATMENT, AND NA (T4) 54 4.2.1 Mechanical properties 54 4.2.2 DSC analysis 57 4.2.3 EPMA analysis 59 4.2.4 TEM analysis 63 4.2.5 SAXS analysis 65 4.2.6 Summary 70 4.3 ANALYSIS OF ANALYSIS OF Η' PRECIPITATES (ARTIFICIAL AGEING STAGE) 72 4.3.1 HRTEM of η' precipitates after different stage of heat treatments 72 4.3.2 STEM HAADF and EDX mapping of η' precipitates 74 4.3.3 Cs-corrected STEM HRTEM and EDX mapping of η' precipitates 87 4.4 ARTIFICIAL AGEING (T6) 90 4.4.1 Mechanical properties 92 4.4.1.1 Artificial ageing at 100 °C 92 4.4.1.2 Artificial ageing at 120 °C 97 4.4.1.3 Artificial ageing at 140 °C 102 4.4.1.4 Artificial ageing at 160 °C 106 4.4.2 Microstructure 110 4.4.2.1 Artificial ageing at 100 °C 113 4.4.2.2 Artificial ageing at 120 °C 115 4.4.2.3 Artificial ageing at 140 °C 117 4.4.2.4 Artificial ageing at 160 °C 119 4.4.2.5 The number densities and the volume fractions 121 4.4.2.6 Conclusions 124 4.5 CONCLUSION 127 CHAPTER 5 IMPROVED SOLID SOLUTION TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AA7075 ALUMINUM ALLOYS 128 5.1 DESIGN OF STEPS SOLID SOLUTION TREATMENT 128 5.1.1 Brief research background 128 5.1.2 Characterize incipient melting 129 5.1.3 Improve solid solution treatment 132 5.2 MECHANICAL PROPERTY 137 5.2.1 T4 treatment 137 5.2.2 T6 treatment 141 5.3 CONCLUSION 143 CHAPTER 6 HIGHLIGHTS 144 CHAPTER 7 FUTURE WORK 146 ABBREVIATION LIST 147 REFERENCE 149 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Al-Zn-Mg-Cu鋁合金 | zh_TW |
| dc.subject | η'相 | zh_TW |
| dc.subject | 奈米級析出物 | zh_TW |
| dc.subject | 二次相 | zh_TW |
| dc.subject | 微差式掃描量熱法 | zh_TW |
| dc.subject | 電子顯微鏡 | zh_TW |
| dc.subject | 析出強化 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 顯微結構 | zh_TW |
| dc.subject | 熱處理 | zh_TW |
| dc.subject | heat treatments | en |
| dc.subject | η' phase | en |
| dc.subject | mechanical property | en |
| dc.subject | microstructure | en |
| dc.subject | Al-Zn-Mg-Cu alloys | en |
| dc.subject | differential scanning calorimetry (DSC) | en |
| dc.subject | secondary phase | en |
| dc.subject | nanoscale precipitates | en |
| dc.subject | transmission electron microscope (TEM) | en |
| dc.subject | precipitation hardening | en |
| dc.title | 改變銅添加量以及熱處理製程對AA7075鋁合金之奈米級析出物以及機械性質的影響 | zh_TW |
| dc.title | The effects of different Cu additions and heat treatments on the nanoscale precipitates and mechanical property of AA7075 aluminum alloys | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王星豪;陳志遠;黃慶淵;蘇德徴 | zh_TW |
| dc.contributor.oralexamcommittee | Shing-Hoa Wang;Chih-Yuan Chen;Qing-Yuan Huang;Te-Cheng Su | en |
| dc.subject.keyword | Al-Zn-Mg-Cu鋁合金,熱處理,顯微結構,機械性質,析出強化,電子顯微鏡,微差式掃描量熱法,二次相,奈米級析出物,η'相, | zh_TW |
| dc.subject.keyword | Al-Zn-Mg-Cu alloys,heat treatments,microstructure,mechanical property,precipitation hardening,transmission electron microscope (TEM),differential scanning calorimetry (DSC),secondary phase,nanoscale precipitates,η' phase, | en |
| dc.relation.page | 154 | - |
| dc.identifier.doi | 10.6342/NTU202202580 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-08-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2022-08-29 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 103.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
