請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86434完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡(Ching-I Huang) | |
| dc.contributor.author | Guan-Lin Chen | en |
| dc.contributor.author | 陳冠霖 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:55:35Z | - |
| dc.date.copyright | 2022-08-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-19 | |
| dc.identifier.citation | [1] Tsao, J.; Lewis, N.; Crabtree. Solar FAQs. US department of Energy, 2006, 13. [2] PHOTOVOLTAICS: Measuring the 'Sun'. https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun. [3] Bhadra, C. M.; Perera, P. G. T.; Truong, V. K.; Ponamoreva, O. N.; Crawford, R. J.; Ivanova, E. P. Renewable Bio-anodes for Microbial Fuel Cells. Handbook of Ecomaterials. Springer, Cham, 2018. [4] Sharma, S.; Jain, K. K.; Sharma, A. Solar Cells: In Research and Applications-A Review. Mater. Sci. Appl. 2015, 6, 1145. [5] Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photon. 2012, 6, 153–161. [6] Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials Interface Engineering for Solution-Processed Photovoltaics. Nature. 2012, 488, 304–312. [7] Brabec, C. J.; Heeney, M.; McCulloch, I; Nelson, J. Influence of Blend Microstructure on Bulk Heterojunction Organic Photovoltaic Performance. Chem. Soc. Rev. 2011, 40, 1185–1199. [8] Janssen, R. A. J.; Nelson, J. Factors Limiting Device Efficiency in Organic Photovoltaics. Adv. Mater. 2013, 25, 1847–1858. [9] Sun, L.; Zeng, W.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Wang, W.; Liu, T.; Jiang, X.; Jiang, Y.; Znou, Y. Flexible All-Solution-Processed Organic Solar Cells with High-Performance Nonfullerene Active Layers. Adv. Mater. 2020, 32, 1907840. [10] Bi, P.; Zhang, S.; Chen, Z.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J.; Qin, J.; Hong, L.; Hao, X.; Hou, J. Reduced Non-Radiative Charge Recombination Enables Organic Photovoltaic Cell Approaching 19% Efficiency. Joule. 2021, 5, 2408. [11] National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. [12] Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868–5923. [13] Zhou, Y.; Eck, M.; Krüger, M. Bulk-Heterojunction Hybrid Solar Cells Based on Colloidal Nanocrystals and Conjugated Polymers. Energy Environ. Sci. 2010, 3, 1851–1864. [14] Coakley, K. M.; McGehee, M. D. Conjugated Polymer Photovoltaic Cells. Chem. Mater. 2004, 16, 4533–4542. [15] Markst, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. The Photovoltaic Response in Poly(ppheny1ene vinylene) Thin-Film Devices. J. Phys. Condens. Matter. 1994, 6, 1379. [16] Tang, C. W. Two‐Layer Organic Photovoltaic Cell. Appl. Phys. Lett. 1986, 48, 183. [17] Sariciftci, N. D.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Semiconducting Polymer‐Buckminsterfullerene Heterojunctions: Diodes, Photodiodes, and Photovoltaic Cells. Appl. Phys. Lett. 1993, 62, 585. [18] Yu, G.; Heeger, A. J. J. Charge Separation and Photovoltaic Conversion in Polymer Composites with Internal Donor/Acceptor Heterojunctions. Appl. Phys. 1995, 78, 4510. [19] Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient Photodiodes from Interpenetrating Polymer Networks. Nature. 1995, 376, 498. [20] Yip, H. L.; Jen, A. K. Y. Recent Advances in Solution-Processed Interfacial Materials for Efficient and Stable Polymer Solar Cells. Energy Environ. Sci. 2012, 5, 5994. [21] Solar Cell Parameters and Equivalent Circuit. https://ocw.tudelft.nl/wpcon-te nt/uploads/solar_energy_section_9_1_9_3.pdf. [22] Po, R.; Maggini, M.; Camaioni, N. Polymer Solar Cells: Recent Approaches and Achievements. J. Phys. Chem. C. 2010, 114, 695–706. [23] Zhang, X.; Li, W.; Yao, J.; Zhan, C. High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering. ACS Appl. Mater. Interfaces. 2016, 8, 15415–15421. [24] Zheng, Z.; Hu, Q.; Zhang, S.; Zhang, D.; Wang, J.; Xie, S.; Wang, R.; Qin, Y.; Li, W.; Hong, L.; Liang, N.; Liu, F.; Zhang, Y.; Wei, Z.; Tang, Z.; Russell, T. P.; Hou, J.; Zhou, H. A Highly Efficient Non-Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fine-Tuned Hole-Transporting Layer. Adv. Mater. 2018, 30, 1801801. [25] Yin, Q.; Zhang, K.; Zhang, L.; Jia, J.; Zhang, X.; Pang, S.; Xu, Q. H.; Duan, C.; Huang, F.; Cao, Y. An Efficient Binary Cathode Interlayer for Large-Bandgap Non-Fullerene Organic Solar Cells. J. Mater. Chem. A. 2019, 7, 12426–12433. [26] Lin, Y.; Yu, L.; Xia, Y.; Firdaus, Y.; Dong, S.; Müller, C.; Inganäs, O.; Huang, F.; Anthopoulos, T. D.; Zhang, F.; Hou, L. One-Step Blade-Coated Highly Efficient Nonfullerene Organic Solar Cells with a Self-Assembled Interfacial Layer Enabled by Solvent Vapor Annealing. Sol. RRL. 2019, 3, 1900179. [27] Hu, L.; Liu, Y.; Mao, L.; Xiong, S.; Sun, L.; Zhao, N.; Qin, F.; Jiang, Y.; Zhou, Y. Chemical Reaction Between an ITIC Electron Acceptor and an Amine-Containing Interfacial Layer in Non-fullerene Solar Cells. J. Mater. Chem. A. 2018, 6, 2273–2278. [28] Upama, M. B.; Elumalai, N. K.; Mahmud, M. A.; Xu, C.; Wang, D.; Wright, M.; Uddin, A. Enhanced Electron Transport Enables over 12% Efficiency by Interface Engineering of Non-fullerene Organic Solar Cells. Sol. Energy Mater. Sol. Cells. 2018, 187, 273–282. [29] Sun, Y.; Lu, S.; Xu, R.; Liu, K.; Zhou, Z.; Yue, S.; Azam, M.; Ren, K.; Wei, Z.; Wang, Z.; Qu, S.; Lei, Y.; Wang, Z. Collection Optimization of Photo-Generated Charge Carriers for Efficient Organic Solar Cells. J. Power Sources. 2019, 412, 465–471. [30] Wang, X.; Yi, S.; He, Z.; Quyang, X.; Wu, H. B.; Zhu, W.; Zhang, B.; Cao, Y. An Environmentally Friendly Natural Polymer as a Universal Interfacial Modifier for Fullerene and Non-fullerene Polymer Solar Cells. Sustainable Energy Fuels. 2020, 4, 1234–1241. [31] Zheng, Z.; Wang, R.; Yao, H.; Xie, S.; Zhang, Y.; Hou, J.; Zhou, H.; Tang, Z. Polyamino Acid Interlayer Facilitates Electron Extraction in Narrow Band Gap Fullerene-Free Organic Solar Cells with an Outstanding Short-Circuit Current. Nano Energy. 2018, 50, 169–175. [32] Sorrentino, R.; Kozma, E.; Luzzati, S.; Po, R. Interlayers for Non-Fullerene Based Polymer Solar Cells: Distinctive Features and Challenges. Energy Environ. Sci. 2021, 14, 180. [33] Huang, J.; Yin, Z. G.; Zheng, Q. D. Applications of ZnO in Organic and Hybrid Solar Cells. Energy Environ. Sci. 2011, 4, 3861−3877. [34] Kyaw, A. K. K.; Wang, D. H.; Wynands, D.; Zhang, J.; Nguyen, T. Q.; Bazan, G. C.; Heeger, A. J. Improved Light Harvesting and Improved Efficiency by Insertion of an Optical Spacer (ZnO) in Solution-Processed Small-Molecule Solar Cells. Nano Lett. 2013, 13, 3796−3801. [35] Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer. Adv. Mater. 2011, 23, 1679–1683. [36] Znaidi, L. Sol–Gel-Deposited ZnO Thin Films: A review. Mater. Sci. Eng., B. 2010, 174, 18–30. [37] Chen, S.; Small, C. E.; Amd, C. M.; Subbiah, J.; Lai, T. h.; Tsang, S. W.; Manders, J. R.; Reynolds, J. R.; So, F. Inverted Polymer Solar Cells with Reduced Interface Recombination. Adv. Energy Mater. 2012, 2, 1333–1337. [38] Polydorou, E.; Sakellis, I.; Soultati, A.; Kaltzoglou, A.; Papadopoulos, T. A.; Briscoe, J.; Tsikritzis, D.; Fakis, M.; Palilis, L. C.; Kennou, S.; Argitis, P.; Falaras, P.; Davazoglou, D.; Vasilopoulou, M. Avoiding Ambient Air and Light Induced Degradation in High-Efficiency Polymer Solar Cells by the Use of Hydrogen-Doped Zinc Oxide as Electron Extraction Material. Nano Energy. 2017, 34, 500–514. [39] Wei, J.; Ji, G.; Zhang, C.; Yan, L.; Luo, Q.; Wang, C.; Chen, Q.; Yang, J.; Chen, L.; Ma, C. Q. Silane-Capped ZnO Nanoparticles for Use as the Electron Transport Layer in Inverted Organic Solar Cells. ACS Nano. 2018, 12, 5518–5529. [40] Woo, S.; Kim, W. H.; Kim, H.; Yi, Y.; Lyu, H. K.; Kim, Y. 8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanolayer-Modified Inorganic Electron-Collecting Buffer Layers. Adv. Energy Mater. 2014, 4, 1301692. [41] Venkatesan, S.; Ngo, E.; Khatiwada, D.; Zhang, C.; Qiao, Q. Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers. ACS Appl. Mater. Interfaces. 2015, 7, 16093–16100. [42] Xiao, J.; Chen, Z.; Zhang, G.; Li, Q. Y.; Yin, Q.; Jiang, X. F.; Huang, F.; Xu, Y. X.; Yip, H. L.; Cao, Y. Efficient Device Engineering for Inverted Non-Fullerene Organic Solar Cells with Low Energy Loss. J. Mater. Chem. C. 2018, 6, 4457–4463. [43] Park, H. S.; Han, Y. W.; Lee, H. S.; Jeon, S. J.; Moon, D. K. 13.2% Efficiency of Organic Solar Cells by Controlling Interfacial Resistance Resulting from Well-Distributed Vertical Phase Separation. ACS Appl. Energy Mater. 2020, 3, 3745–3754. [44] Xu, X.; Xiao, J.; Zhang, G.; Wei, L.; Jiao, X.; Yip, H. L.; Cao, Y. Interface-Enhanced Organic Solar Cells with Extrapolated T80 Lifetimes of Over 20 Years. Sci. Bull. 2020, 65, 208–216. [45] Huang, S.; Pang, Y.; Li, X.; Wang, Y.; Yu, A.; Tang, Y.; Kang, B.; Silva, S. R. P.; Lu, G. Strontium Fluoride and Zinc Oxide Stacked Structure as an Interlayer in High-Performance Inverted Polymer Solar Cells. ACS Appl. Mater. Interfaces. 2019, 11, 2149–2158. [46] Fanady, B.; Song, W.; Peng, R.; Wu, T.; Ge, Z. Efficiency Enhancement of Organic Solar Cells Enabled by Interface Engineering of Sol-Gel Zinc Oxide with an Oxadiazole-Based Material. Org. Electron. 2020, 76, 105483. [47] Hong, L.; Yao, H.; Cui, Y.; Yu, R.; Lin, Y. W.; Chen, T. W.; Xu, Y.; Qin, J.; Hsu, C. S.; Ge, Z.; Hou, J. Simultaneous Improvement of Efficiency and Stability of Organic Photovoltaic Cells by using a Cross-Linkable Fullerene Derivative. Small. 2021, 17, 2101133. [48] Lin, P. C.; Wong, Y. T.; Su, Y. A.; Chen, W. C.; Chueh, C. C. Interlayer Modification Using Eco-friendly Glucose-Based Natural Polymers in Polymer Solar Cells. ACS Sustainable Chem. Eng. 2018, 6, 14621–14630. [49] Irimia-Vladu, M.; Głowacki, E. D.; Voss, G.; Bauer, S.; Sariciftci, N. S. Green and biodegradable electronics. Mater. Today. 2012, 15, 340–346. [50] Dagar, J.; Scavia, G.; Scarselli, M.; Destri, S.; Crescenzi, M. D.; Brown, T. M. Coating ZnO Nanoparticle Films with DNA Nanolayers for Enhancing the Electron Extracting Properties and Performance of Polymer Solar Cells. Nanoscale. 2017, 9, 19031–19038. [51] Zhu, X.; Guo, B.; Fang, J.; Zhai, T.; Wang, Y.; Li, G.; Zhang, J.; Wei, Z.; Duhm, S.; Guo, X.; Zhang, M.; Li, Y. Surface Modification of ZnO Electron Transport Layers with Glycine for Efficient Inverted Non-Fullerene Polymer Solar Cells. Org. Electron. 2019, 70, 25–31. [52] Wu, J.; Liu, Y.; Islam, A.; Zheng, Q.; Li, J.; Ji, W.; Chen, L.; Ouyang, X. From Straw to Device Interface: Carboxymethyl-Cellulose-Based Modified Interlayer for Enhanced Power Conversion Efficiency of Organic Solar Cells. Adv. Sci. 2020, 7, 1902269. [53] Li, J.; Wang, N.; Wang, Y.; Liang, Z.; Peng, Y.; Yang, C.; Bao, X.; Xia, Y. Efficient Inverted Organic Solar Cells with a Thin Natural Biomaterial L-Arginine as Electron Transport Layer. Solar Energy. 2020, 196, 168–176. [54] Park, S.; Son, H. J. Intrinsic Photo-Degradation and Mechanism of Polymer Solar Cells: The Crucial Role of Non-Fullerene Acceptor. J. Mater. Chem. A. 2019, 7, 25830. [55] Hu, L.; Jiang, Y.; Sun, L.; Xie, C.; Qin, F.; Wang, W.; Zhou, Y. Significant Enhancement of Illumination Stability of Nonfullerene Organic Solar Cells via an Aqueous Polyethylenimine Modification. J. Phys. Chem. Lett. 2021, 12, 2607–2614. [56] Jiang, Y.; Sun, L.; Jiang, F.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Liu, T.; Hu, L.; Jiang, X.; Zhou, Y. Photocatalytic Effect of ZnO on Nonfullerene Acceptors and Its Mitigation by SnO2 for Nonfullerene Organic Solar Cells. Mater. Horiz. 2019, 6, 1438–1443. [57] Günther, M.; Blätte, D.; Oechsle, A. L.; Rivas, S. S.; Amin, A. A. Y.; Müller-Buschbaum, P. Increasing Photostability of Inverted Nonfullerene Organic Solar Cells by Using Fullerene Derivative Additives. ACS Appl. Mater. Interfaces. 2021, 13, 19072–19084. [58] Su, L. Y.; Huang, H. H.; Tsai, C. E.; Hou, C. H.; Shyue, J. J.; Lu, C. H.; Pao, C. W.; Yu, M. H.; Wang, L.; Chueh, C. C. Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. Small. 2022, 18, 2107834. [59] Guo, J.; Dong, J.; Wang, Z.; Dong, P.; Wang, X.; Chen, L.; Zhou, Y.; Hao, Y.; Wang, H.; Xu, B. Easy-Processing Saccharin Doped ZnO Electron Extraction Layer in Efficient Polymer Solar Cells. Solar Energy. 2021, 220, 706–712. [60] Pan, W.; Han, Y.; Wang, Z.; Gong, C.; Guo, J.; Lin, J.; Luo, Q.; Yang, S.; Ma, C. Q. An Efficiency of 14.29% and 13.08% for 1 cm2 and 4 cm2 Flexible Organic Solar Cells Enabled by Sol-Gel ZnO and ZnO Nanoparticle Bilayer Electron Transporting Layers. J. Mater. Chem. A. 2021, 9, 16889–16897. [61] Chen, X.; Zhu, B.; Kan, B.; Gao, K.; Peng, X.; Cao, Y. Cathode Interlayer-Free Organic Solar Cells with Enhanced Device Performance Upon Alcohol Treatment. J. Mater. Chem. C. 2019, 7, 7947–7952. [62] Zhang, R.; Zhao, M.; Wang, Z.; Wang, Z.; Zhao, B.; Miao, Y.; Zhou, Y.; Wang, H.; Hao, Y.; Chen, G.; Zhu, F. Solution-Processable ZnO/Carbon Quantum Dots Electron Extraction Layer for Highly Efficient Polymer Solar Cells. ACS Appl. Mater. Interfaces. 2018, 10, 4895–4903. [63] S. Wu, Calculation of Interfacial Tension in Polymer Systems. J. Polym. Sci., C Polym. Symp. 1971, 34, 19–30. [64] He, C.; Zhong, C.; Wu, H.; Yang, R.; Yang, W.; Huang, F.; Bazan, G. C.; Cao, Y. Origin of the Enhanced Open-Circuit Voltage in Polymer Solar Cells via Interfacial Modification using Conjugated Polyelectrolytes. J. Mater. Chem. 2010, 20, 2617–2622. [65] Ma, L.; Zhang, S.; Yao, H.; Xu, Y.; Wang, J.; Zu, Y.; Hou, J. High-Efficiency Nonfullerene Organic Solar Cells Enabled by 1000 nm Thick Active Layers with a Low Trap-State Density. ACS Appl. Mater. Interfaces. 2020, 12, 18777–18784. [66] Carbone, A.; Kotowska, B. K.; Kotowska, D. f−γ Current Fluctuations in Organic Semiconductors: Evidence for Percolation. Eur. Phys. J. B. 2006, 50, 77–81. [67] Jin, H. C.; Salma, S. A.; Moon, D. K.; Kim, J. H. Effect of Conjugated Polymer Electrolytes with Diverse Acid Derivatives as a Cathode Buffer Layer on Photovoltaic Properties. J. Mater. Chem. A. 2020, 8, 4562–4569. [68] Liu, X.; Zou, Y.; Wang, H. Q.; Wang, L.; Fang, J.; Yang, C. High-Performance All-Polymer Solar Cells with a High Fill Factor and a Broad Tolerance to the Donor/Acceptor Ratio. ACS Appl. Mater. Interfaces. 2018, 10, 38302–38309. [69] Su, L. Y.; Huang, H. H.; Lin, Y. C.; Chen, G. L.; Chen, W. C.; Chen, W.; Wang, L.; Chueh, C. C. Enhancing Long-Term Thermal Stability of Non-Fullerene Organic Solar Cells Using Self-Assembly Amphiphilic Dendritic Block Copolymer Interlayers. Adv. Funct. Mater. 2020, 31, 2005753. [70] Zhang, W.; Huang, J.; Xu, J.; Han, M.; Su, D.; Wu, N.; Zhang, C.; Xu, A.; Zhan, C. Phthalimide Polymer Donor Guests Enable over 17% Efficient Organic Solar Cells via Parallel-Like Ternary and Quaternary Strategies. Adv. Energy Mater. 2020, 10, 2001436. [71] Schuller, S.; Schilinsky, P.; Hauch, J.; Brabec, C. J. Determination of the Degradation Constant of Bulk Heterojunction Solar Cells by Accelerated Lifetime Measurements. Appl. Phys. A. 2004, 79, 37–40. [72] Huang, H. H.; Shih, Y. C.; Wang, L.; Lin, K. F. Boosting the Ultra-Stable Unencapsulated Perovskite Solar Cells by Using Montmorillonite/CH3NH3PbI3 Nanocomposite as Photoactive Layer. Energy Environ. Sci. 2019, 12, 1265–1273. [73] Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B. 1994, 49, 14251. [74] Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mat. Sci. 1996, 6, 15. [75] Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B. 1996, 54, 11169. [76] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [77] Chiang, L. Y.; Bhonsle, J. B.; Wang, L.; Shu, S. F.; Chang, T. M.; Hwu, J. R. Efficient One-Flask Synthesis of Water-Soluble [60] Fullerenols. Tetrahedron. 1996, 52, 4963–4972. [78] Li, Z.; Wang, S. H.; Cui, J.; Wang, Y.; Zhang, J.; Xu, P.; Zhou, M.; Wang, L.; Wang, H. L. C60(OH)12 and Its Nanocomposite for High-Performance Lithium Storage. ACS Nano. 2020, 14, 1600–1608. [79] Chiang, L. Y.; Wang, L.-Y.; Swirczewski, J. W.; Soled, S.; Cameron, S. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. J. Org. Chem. 1994, 59, 3960–3968. [80] Xu, Y.; Yuan, J.; Zhou, S.; Seifrid, M.; Ying, L.; Li, B.; Huang, F.; Bazan, G. C.; Ma, W. Ambient Processable and Stable All-Polymer Organic Solar Cells. Adv. Funct. Mater. 2019, 29, 1806747. [81] Gómez-Carracedo, A.; Alvarez-Lorenzo, C.; Gómez-Amoza, J. L.; Concheiro, A. Chemical Structure and Glass Transition Temperature of Non-ionic Cellulose Ethers. J. Therm. Anal. Calorim. 2003, 73, 587–596. [82] Li, X. G.; Huang, M. R.; Bai, H. Thermal Decomposition of Cellulose Ethers. J. Appl. Polym. Sci. 1999, 73, 2927−2936. [83] Y, Yang.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells. J. Am. Chem. Soc. 2016, 138, 15011–15018. [84] Y, Yang. The Original Design Principles of the Y-Series Nonfullerene Acceptors, from Y1 to Y6. ACS Nano. 2021, 15, 18679–18682. [85] He, Y.; Chen, H. Y.; Hou, J.; Li, Y. Indene−C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2010, 132, 1377–1382. [86] Liu, F.; Liu, W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W.; Xu, S.; Fan, H.; Feng, L.; Yi, Y.; Zhang, W.; Zhu, X. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. Adv. Mater. 2021, 33, 2100830. [87] Yu, K.; Song, W.; Li, Y.; Chen, Z.; Ge, J.; Yang, D.; Zhang, J.; Xie, L.; Liu, C.; Ge, Z. Achieving 18.14% Efficiency of Ternary Organic Solar Cells with Alloyed Nonfullerene Acceptor. Small Struct. 2021, 2, 2100099. [88] Chen, X.; Wang, D.; Wang, Z.; Li, Y.; Zhu, H.; Lu, X.; Chen, W.; Qiu, H.; Zhang, Q. 18.02% Efficiency Ternary Organic Solar Cells with a Small-Molecular Donor Third Component. Chem. Eng. J. 2021, 424, 130397. [89] Gao, J.; Ma, X.; Xu, C.; Wang, X.; Son, J. H.; Jeong, S. Y.; Zhang, Y.; Zhang, C.; Wang, K.; Niu, L.; Zhang, J.; Woo, H. Y.; Zhang, J.; Zhang, F. Over 17.7% Efficiency Ternary-Blend Organic Solar Cells with Low Energy-Loss and Good Thickness-Tolerance. Chem. Eng. J. 2022, 428, 129276. [90] Duan, X.; Song, W.; Qiao, J.; Li, X.; Cai, Y.; Wu, H.; Zhang, J.; Hao, X.; Tang, Z.; Ge, Z.; Huang, F.; Sun, Y. Ternary Strategy Enabling High-Efficiency Rigid and Flexible Organic Solar Cells with Reduced Non-Radiative Voltage Loss. Energy Environ. Sci. 2022, 15, 1563–1572. [91] Hacışevki, A. An Overview of Ascorbic Acid Biochemistry. J. Fac. Pharm. Ankara. 2009, 38, 233–255. [92] Arrigoni, O.; De Tullio, M. C. Ascorbic Acid: Much More Than Just An Antioxidant. Biochim. Biophys. Acta. 2002, 1569, 1–9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86434 | - |
| dc.description.abstract | 本研究係將各式界面修飾層材料,應用於高分子太陽能電池反式結構元件,以修飾主動層與電子傳導層材料-氧化鋅(ZnO)之界面,提升太陽能電池元件之效率與長期穩定性。 第一個主軸建立在主動層為全高分子之太陽能電池(all-polymer solar cells)反式結構元件,其主動層為PBDB-T:N2200系統,並引入不同官能基與表面能之PEI、PEIE以及天然材料cellulose作為界面修飾層材料,其中cellulose材料具備天然、無毒、環保以及生物可降解之特色。ZnO元件最高元件效率為6.06%,經使用PEI、PEIE以及cellulose作為界面修飾層,最高元件效率分別提升至6.99、7.06以及7.33%。使用X射線光電子能譜(XPS)和第一原理計算,證明cellulose具有高吸附能以及能與ZnO之界面間形成強氫鍵作用力,且本質具有較低之表面能,能有效鈍化ZnO表面以及提升界面相容性。在相對溼度40%、溫度25 ℃條件之濕度穩定性, ZnO/cellulose元件之T80元件壽命為2023小時,大幅超越ZnO/PEIE、ZnO/PEI和ZnO元件之T80元件壽命,它們分別為95、45以及26小時。原因來自於cellulose具有優異耐水性,其薄膜形貌助益於延長水分子滲透通道和時間,並且透過界面間形成強氫鍵作用力而延緩水分子吸附。另外,cellulose具有高玻璃轉移溫度(Tg)以及與主動層和ZnO之優良界面相容性,因此在N2環境、溫度75℃條件測試熱穩定性,相較於ZnO元件之T80元件壽命為1746小時,ZnO/cellulose提升至2712小時。ZnO/cellulose元件亦可以存放在相對濕度50-60%、溫度75 ℃,承受複雜環境並維持572小時之T80元件壽命。 第二個主軸為建立在非富勒烯高分子太陽能電池(non-fullerene based polymer solar cells)反式結構元件,其主動層為二元系統(binary system) 的PM6:Y6以及三元系統(ternary system) 的PM6:Y6:PC71BM,亦探討主動層與電子傳輸層材料ZnO之界面,使用富勒烯衍生物C60(OH)x作為界面修飾層材料。以XPS和傅立葉轉換紅外光譜儀(FTIR)證明,C60(OH)x能與ZnO (O-H···O)和Y6 (O-H···F)形成極強之氫鍵作用力,提升界面相容性、電荷傳輸以及抑制電荷再結合,進而強化界面性質。以C60(OH)x作為界面修飾層之二元與三元系統其最高元件效率,分別從14.41%提高到15.80%、由16.10%至16.81%。其熱穩定性在N2環境、65 ℃條件,二元系統之ZnO/C60(OH)x元件保持T80元件壽命長達 6187小時,並以阿瑞尼斯方程式(Arrhenius equation)預測其室溫(25 °C)之T80元件壽命可以維持34635小時 (約3.95年),而三元系統之ZnO/C60(OH)x元件經過4200小時亦能保持 87%之元件壽命。富勒烯衍生物材料之本質具有良好的自由基捕獲能力,因此ZnO/C60(OH)x元件於N2環境、AM 1.5 G太陽光譜及100 mW/cm²光強度連續照光1200小時,在二元以及三元系統分別維持88%和91%之元件效率。 第三主軸為探討以低成本、環保永續之天然抗氧化材料Vitamin C作為主動層與電子傳輸層ZnO之界面修飾層,亦應用於非富勒烯高分子太陽能電池反式結構元件,其主動層為二元PM6:Y6以及三元PM6:Y6:PC71BM系統。以XPS與FTIR光譜證明,Viatmin C能與ZnO (O-H···O)和Y6 (O-H···F)形成氫鍵作用力,促進界面相容性、電荷傳輸效率以及抑制電荷再結合。以Viatmin C作為界面修飾層之二元與三元系統其最高元件效率,分別從14.28%提高到15.21%、由16.04%上升至16.54%。Viatmin C本質具有優異之自由基捕獲與抗氧化能力,二元系統之ZnO/Viatmin C元件以AM 1.5 G太陽光譜及100 mW/cm²光強度連續照光2100小時、N2環境,能維持85%之元件效率,而三元系統之ZnO/Viatmin C元件經連續照光1680小時,亦能保持80%之元件效率。其熱穩定性在N2環境、65 ℃條件,二元系統之ZnO/Viatmin C元件保持T80元件壽命長達4437小時,而三元系統之ZnO/Viatmin C元件經過4200小時亦能維持 85%之元件壽命。 | zh_TW |
| dc.description.abstract | This work aims to enhance the power conversion efficiency (PCE) and long-term stability of polymer solar cells by improving the interface between active layer and zinc oxide, an electron transport layer (ETL) with various organic molecules. In the frist part, three polymers (PEI, PEIE, and cellulose) were applied as the interlayer of inverted all-polymer solar cells (All-PSCs) which comprised the blend of PBDB-T and N2200 as the photoactive materials. The champion cells exhibited PCEs of 6.06, 6.99,7.06, and 7.33% for the bare ZnO, ZnO/PEI, ZnO/PEIE, and ZnO/cellulose systems, respectively. Among them, cellulose possessed the lowest surface energy, highest adsorption energy, and strongest hydrogen bonding with ZnO, effectively passivating the surface defects of ZnO and improving the interfacial compatibility of active layer. The device stability was evaluated by aging the unencapsulated cells at 25 °C and a relative humidity (RH) of 40% under N2 atmosphere and measuring the dependence of PCE on storing time. The ZnO/cellulose device exhibited an outstanding T80 of 2030 hr, which significantly surpassed the T80s of the ZnO/PEIE (95 hr), ZnO/PEI (45 hr), and pristine ZnO (26 hr) devices, because cellulose showed superior water resistance, strong hydrogen bonding with ZnO, and its dense morphology effectively prolonged the infiltration time of water molecules to reach the ZnO surface. Furthermore, the device’s thermal stability was examined at 75 ℃ in an atmosphere of N2 gas. Similarly, the ZnO/cellulose device showed the highest capability against thermal stress and had an impressive T80 of 2712 hr due to the high glass transition temperature (Tg) of cellulose and improved interfacial compatibility between the active layer and ZnO. ZnO/cellulose device also can withstand complex environments by storing them at 75 °C in a relative humidity (RH) of 50-60%, the T80 lifetime of the ZnO/cellulose device is >572 hr. In the second part, fullerenol, C60(OH)x, was employed as the surface modifier of ZnO in the inverted non-fullerene acceptor based polymer solar cells (NFA-based PSCs) which comprised the physical blends of PM6:Y6 or PM6:Y6:PC71BM as the active layer. The incorporation of C60(OH)x markedly improved the PCE of the binary (PM6:Y6) and ternary (PM6:Y6:PC71BM) solar devices from 14.41% to 15.80% and from 16.10% to 16.81%, respectively because it enhanced the charge extraction ability across the active layer/ZnO interface and inhibited the trap-assisted recombination by passivating the defect on the ZnO surface. Both results from X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that C60(OH)x can form hydrogen bonds with the oxygen atoms of ZnO and the fluorine atoms of Y6, significantly enhancing the compatibility between the ETL and the organic photoactive film and thus stabilizing the interface against environmental stresses. As a result, the ZnO/C60(OH)x device for the binary system maintained 80% of its original PCE after storing at 65 °C for over 6187 hr in N2 atmosphere, and the T80 lifetime of the device at room temperature (25 °C) was predicted by Arrhenius equation to be greater than 34635 hr, ≈ 3.95 years. Besides, the ZnO/C60(OH)x device for the ternary system also reserved 87% of the initial PCE at 65 ℃ for >4200 hr in N2 atmosphere. It is well known that C60 is an excellent free radical scavenger. Therefore, the ZnO/C60(OH)x device retained 88% and 91% of initial PCE for the binary and ternary systems, respectively, after continuous light soaking with a solar simulator at 100 mW/cm² intensity for >1200 hr in N2 atmosphere. In the final part, natural-antioxidant Vitamin C was used as the surface modifier of ZnO in the inverted NFA-based binary and ternary PSCs and it effectively raised the highest PCE from 14.28% to 15.21% and from 16.04% to 16.54% for the PM6:Y6 (binary) and PM6:Y6:PC71BM (ternary) devices, respectively. This is primarily because of the restrain of the trap-assisted recombination by passivating the defect on the ZnO surface and the increment of the charge extraction ability across the active layer/ZnO interface. Furthermore, experimental results indicated that a thin layer of Vitamin C effectively suppressed the photocatalytic degradation of NFA due to its strong free-radical scavenging ability. As a result, the ZnO/Vitamin C device for the binary system retained 85% of its original PCE for >2100 hr, and the ternary system reserved 80% of the initial PCE for >1680 hr under continuous light illumination with a solar simulator at one-sun intensity in N2 condition. Additionally, the X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy measurements demonstrated that the hydroxyl moieties of Vitamin C can form hydrogen bonds with the O atoms of ZnO and the fluorine atoms of Y6, the NFA used herein, significantly stabilizing the interface between ZnO and the organic photoactive films against thermal treatment. Hence, the ZnO/Vitamin C device for the binary system maintained 80% and ternary system reserved 85% of their initial PCE after being thermally aged at 65 ℃ in N2 condition for over 4437 hr and 4200 hr, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:55:35Z (GMT). No. of bitstreams: 1 U0001-1808202215433800.pdf: 8880823 bytes, checksum: b1b33014daa2ffdc68909069919fbfea (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………………....I 摘要…………………………………………………………………………………..III Abstract. ………………………………………………………………………….......V 目錄………………………………………………………………………………..VIII 圖目錄……………………………………………………………………………….XI 表目錄……………………………………………………………………………XVIII 第一章 緒論…………………………………………………………………………..1 1.1 能源及太陽能電池……………………………………………………….1 1.2 太陽能電池元件之工作原理與結構…………………………………….3 1.3 太陽能電池元件之光伏性質…………………………………………….6 1.4 電子傳導層材料………………………………………………………….9 1.5 電子傳導層材料-氧化鋅(Zinc oxide, ZnO)……………………………10 1.6 界面修飾層材料………………………………………………………...11 1.7 非富勒烯電子受體材料於ZnO之光降解……………………………..17 1.8 研究動機及方法………………………………………………………...20 第二章 實驗設計與方法……………………………………………………………21 2.1 化學藥品………………………………………………………………...21 2.2 實驗儀器與設備………………………………………………………...25 2.3 光電性質分析…………………………………………………………...30 2.3.1暗電流測量(Dark current measurement)…………………………..30 2.3.2 缺陷密度(Trap density)…………………………………………...30 2.3.3光強度分析(Light intensity analysis)…..………………………….31 2.4 高分子太陽能電池之製備……………………………………………...32 2.5 阿瑞尼斯方程式(Arrhenius equation)預測元件壽命………………….35 2.6 第一原理計算模型和優化結構………………………………………..36 2.7 富勒烯衍生物Fullerenol (C60(OH)x)之合成…………………………..37 第三章 以天然材料cellulose作為界面修飾層提升全高分子太陽能電池之效率 及穩定性…………………………………………………………………………….38 3.1 元件之光伏性質與效率………………………………………………..38 3.2 元件之濕度穩定性……………………………………………………..43 3.3 元件之熱穩定性………………………………………………………..50 3.4 結論……………………………………………………………………..54 第四章 以富勒烯衍生物材料C60(OH)x作為界面修飾層提升非富勒烯高分子太陽能電池之效率及穩定性………………………………………………………….55 4.1 元件之光伏性質與效率………………………………………………..55 4.2 元件之熱穩定性………………………………………………………..60 4.3 元件之光穩定性………………………………………………………..66 4.4 結論……………………………………………………………………..71 第五章 以天然抗氧化材料Vitamin C作為界面修飾層提升非富勒烯高分子太陽能電池之效率及穩定性…………………………………………………………….72 5.1 元件之光伏性質與效率………………………………………………..72 5.2 元件之熱穩定性………………………………………………………..76 5.3 元件之光穩定性………………………………………………………..81 5.4 天然抗氧化材料Vitamin C 與富勒烯衍生物材料C60(OH)x之元件效率及穩定性比較…………………………………………………………………….86 5.5 結論……………………………………………………………………..92 第六章 參考文獻…………………………………………………………………...93 第七章 附錄………………………………………………………………………..104 7.1 第三章輔助數據……………………………………………………….104 7.2 第四章輔助數據……………………………………………………….105 7.3 第五章輔助數據……………………………………………………….108 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高分子太陽能電池 | zh_TW |
| dc.subject | 界面修飾層 | zh_TW |
| dc.subject | 界面相容性 | zh_TW |
| dc.subject | 氫鍵作用力 | zh_TW |
| dc.subject | 長期穩定性 | zh_TW |
| dc.subject | 高分子太陽能電池 | zh_TW |
| dc.subject | 界面修飾層 | zh_TW |
| dc.subject | 界面相容性 | zh_TW |
| dc.subject | 氫鍵作用力 | zh_TW |
| dc.subject | 長期穩定性 | zh_TW |
| dc.subject | Hydrogen bonding interaction | en |
| dc.subject | Interfacial modification layer | en |
| dc.subject | The long-term stability | en |
| dc.subject | Polymer solar cells | en |
| dc.subject | Interfacial modification layer | en |
| dc.subject | Interfacial compatibility | en |
| dc.subject | Polymer solar cells | en |
| dc.subject | The long-term stability | en |
| dc.subject | Hydrogen bonding interaction | en |
| dc.subject | Interfacial compatibility | en |
| dc.title | 以界面工程提升高分子太陽能電池之效率及穩定性 | zh_TW |
| dc.title | Boosting the Efficiency and Stability of Polymer Solar Cells by Interfacial Engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王立義(Leeyih Wang) | |
| dc.contributor.oralexamcommittee | 鄭如忠(Ru-Jong Jeng),陳錦地(Chin-Ti Chen),戴子安(Chi-An Dai) | |
| dc.subject.keyword | 高分子太陽能電池,界面修飾層,界面相容性,氫鍵作用力,長期穩定性, | zh_TW |
| dc.subject.keyword | Polymer solar cells,Interfacial modification layer,Interfacial compatibility,Hydrogen bonding interaction,The long-term stability, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU202202548 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-22 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202215433800.pdf | 8.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
