請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86428完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯嘉洪(Chia-hung Hou) | |
| dc.contributor.author | Chih-Yun Yu | en |
| dc.contributor.author | 游芷芸 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:55:14Z | - |
| dc.date.copyright | 2022-08-31 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-19 | |
| dc.identifier.citation | Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, 122231. Al-Karaghouli, A., & Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343-356. Ariono, D., & Wenten, I. G. (2017). Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane. Materials Research Express, 4(2), 024006. Arulrajan, A. C., Dykstra, J. E., Van Der Wal, A., & Porada, S. (2021). Unraveling pH Changes in Electrochemical Desalination with Capacitive Deionization. Environmental Science & Technology, 55(20), 14165-14172. Banasiak, L. J., Kruttschnitt, T. W., & Schäfer, A. I. (2007). Desalination using electrodialysis as a function of voltage and salt concentration. Desalination, 205(1-3), 38-46. Berezina, N. P., Kononenko, N. A., Dyomina, O. A., & Gnusin, N. P. (2008). Characterization of ion-exchange membrane materials: properties vs structure. Advances in Colloid and Interface Science, 139(1-2), 3-28. Chen, T. H., Yeh, K. H., Lin, C. F., Lee, M., & Hou, C. H. (2022). Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resources, Conservation and Recycling, 177, 106012. Di Salvo, J. L., De Luca, G., Cipollina, A., & Micale, G. (2020). Effect of ion exchange capacity and water uptake on hydroxide transport in PSU-TMA membranes: A DFT and molecular dynamics study. Journal of Membrane Science, 599, 117837. Folaranmi, G., Bechelany, M., Sistat, P., Cretin, M., & Zaviska, F. (2020). Towards electrochemical water desalination techniques: a review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization. Membranes, 10(5), 96. Galama, A. H., Hoog, N. A., & Yntema, D. R. (2016). Method for determining ion exchange membrane resistance for electrodialysis systems. Desalination, 380, 1-11. Garcia-Vasquez, W., Ghalloussi, R., Dammak, L., Larchet, C., Nikonenko, V., & Grande, D. (2014). Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to aging in sodium hypochlorite. Journal of Membrane Science, 452, 104-116. Gohil, G. S., Shahi, V. K., & Rangarajan, R. (2004). Comparative studies on electrochemical characterization of homogeneous and heterogeneous type of ion-exchange membranes. Journal of Membrane Science, 240(1-2), 211-219. Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, 10(7), 146. Heidary, F., Kharat, A. N., Khodabakhshi, A., & Madaeni, S. S. (2017). Influence of preparation procedure and ferric oxide nanoparticles addition on transport properties of homogeneous cation-exchange SPPO/SPVC membrane. Bulletin of Materials Science, 40(4), 631-644. Honarparvar, S., Zhang, X., Chen, T., Alborzi, A., Afroz, K., & Reible, D. (2021). Frontiers of membrane desalination processes for brackish water treatment: A review. Membranes, 11(4), 246. Honarparvar, S., Zhang, X., Chen, T., Na, C., & Reible, D. (2019). Modeling technologies for desalination of brackish water—toward a sustainable water supply. Current Opinion in Chemical Engineering, 26, 104-111. Hosseini, S. M., Gholami, A., Madaeni, S. S., Moghadassi, A. R., & Hamidi, A. R. (2012). Fabrication of (polyvinyl chloride/cellulose acetate) electrodialysis heterogeneous cation exchange membrane: Characterization and performance in desalination process. Desalination, 306, 51-59. Hosseini, S. M., Madaeni, S. S., Heidari, A. R., & Khodabakhshi, A. R. (2012). Preparation and characterization of poly (vinyl chloride)-blend-poly (carbonate) heterogeneous cation exchange membrane: Investigation of solvent type and ratio effects. Desalination, 285, 253-262. Hou, C. H., & Huang, C. Y. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124-129. Jang, J., Kang, Y., Han, J. H., Jang, K., Kim, C. M., & Kim, I. S. (2020). Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 491, 114540. Kim, T., & Yoon, J. (2015). CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC advances, 5(2), 1456-1461. Kim, J., Jain, A., Zuo, K., Verduzco, R., Walker, S., Elimelech, M., & Li, Q. (2019). Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. Water Research, 160, 445-453. Kim, J., Kim, S., & Kwak, R. (2021). Controlling ion transport with pattern structures on ion exchange membranes in electrodialysis. Desalination, 499, 114801. Kingsbury, R. S., & Coronell, O. (2021). Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and Manning's counter-ion condensation theory. Journal of Membrane Science, 620, 118411. Kingsbury, R. S., Bruning, K., Zhu, S., Flotron, S., Miller, C. T., & Coronell, O. (2019). Influence of water uptake, charge, manning parameter, and contact angle on water and salt transport in commercial ion exchange membranes. Industrial & Engineering Chemistry Research, 58(40), 18663-18674. Kononenko, N., Nikonenko, V., Grande, D., Larchet, C., Dammak, L., Fomenko, M., & Volfkovich, Y. (2017). Porous structure of ion exchange membranes investigated by various techniques. Advances in Colloid and Interface Science, 246, 196-216. Kumar, M., Khan, M. A., Al-Othman, Z. A., & Choong, T. S. (2013). Recent developments in ion-exchange membranes and their applications in electrochemical processes for in situ ion substitutions, separation and water splitting. Separation & Purification Reviews, 42(3), 187-261. Lee, S., Meng, W., Wang, Y., Wang, D., Zhang, M., Wang, G., ... & Qu, W. (2021). Comparison of the property of homogeneous and heterogeneous ion exchange membranes during electrodialysis process. Ain Shams Engineering Journal, 12(1), 159-166. Luo, T., Abdu, S., & Wessling, M. (2018). Selectivity of ion exchange membranes: A review. Journal of membrane science, 555, 429-454. McNair, R., Cseri, L., Szekely, G., & Dryfe, R. (2020). Asymmetric membrane capacitive deionization using anion-exchange membranes based on quaternized polymer blends. ACS Applied Polymer Materials, 2(7), 2946-2956. McNair, R., Szekely, G., & Dryfe, R. A. (2020). Ion-exchange materials for membrane capacitive deionization. ACS ES&T Water, 1(2), 217-239. Mubita, T., Porada, S., Aerts, P., & Van Der Wal, A. (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. Journal of Membrane Science, 607, 118000. Nagarale, R. K., Gohil, G. S., & Shahi, V. K. (2006). Recent developments on ion-exchange membranes and electro-membrane processes. Advances in colloid and interface science, 119(2-3), 97-130. Nazif, A., Karkhanechi, H., Saljoughi, E., Mousavi, S. M., & Matsuyama, H. (2022). Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: A review. Journal of Water Process Engineering, 47, 102706. Palakkal, V. M., Rubio, J. E., Lin, Y. J., & Arges, C. G. (2018). Low-resistant ion-exchange membranes for energy efficient membrane capacitive deionization. ACS Sustainable Chemistry & Engineering, 6(11), 13778-13786 Patel, S. K., Qin, M., Walker, W. S., & Elimelech, M. (2020). Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization. Environmental Science & Technology, 54(6), 3663-3677. Patel, S. K., Ritt, C. L., Deshmukh, A., Wang, Z., Qin, M., Epsztein, R., & Elimelech, M. (2020). The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy & Environmental Science, 13(6), 1694-1710. Pismenskaya, N. D., Pokhidnia, E. V., Pourcelly, G., & Nikonenko, V. V. (2018). Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogeneous membranes?. Journal of Membrane Science, 566, 54-68. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442. Ran, J., Wu, L., He, Y., Yang, Z., Wang, Y., Jiang, C., & Xu, T. (2017). Ion exchange membranes: New developments and applications. Journal of Membrane Science, 522, 267-291. Shen, Y. Y., Sun, S. H., Tsai, S. W., Chen, T. H., & Hou, C. H. (2021). Development of a membrane capacitive deionization stack for domestic wastewater reclamation: A pilot-scale feasibility study. Desalination, 500, 114851. Soliman, M. N., Guen, F. Z., Ahmed, S. A., Saleem, H., Khalil, M. J., & Zaidi, S. J. (2021). Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection, 147, 589-608. Tang, W., He, D., Zhang, C., Kovalsky, P., & Waite, T. D. (2017). Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Research, 120, 229-237. Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., & Zeng, G. (2019). Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 150, 225-251. Vasil’Eva, V. I., Kranina, N. A., Malykhin, M. D., Akberova, E. M., & Zhiltsova, A. V. (2013). The surface inhomogeneity of ion-exchange membranes by SEM and AFM data. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 7(1), 144-153. Vyas, P. V., Shah, B. G., Trivedi, G. S., Ray, P., Adhikary, S. K., & Rangarajan, R. (2001). Characterization of heterogeneous anion-exchange membrane. Journal of Membrane Science, 187(1-2), 39-46. Xu, T. (2005). Ion exchange membranes: State of their development and perspective. Journal of Membrane Science, 263(1-2), 1-29. Xu, T. W., Li, Y., Wu, L., & Yang, W. H. (2008). A simple evaluation of microstructure and transport parameters of ion-exchange membranes from conductivity measurements. Separation and Purification Technology, 60(1), 73-80. Yeh, C. L., Hsi, H. C., Li, K. C., & Hou, C. H. (2015). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60-68. Yu, J., Jo, K., Kim, T., Lee, J., & Yoon, J. (2018). Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination, 439, 188-195. Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2019). Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 299, 727-735. Zhang, X., Zhao, W., Zhang, Y., & Jegatheesan, V. (2021). A review of resource recovery from seawater desalination brine. Reviews in Environmental Science and Bio/Technology, 20(2), 333-361. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., & Wang, J. (2013). Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination, 324, 127-133. Zhou, D., Zhu, L., Fu, Y., Zhu, M., & Xue, L. (2015). Development of lower cost seawater desalination processes using nanofiltration technologies—A review. Desalination, 376, 109-116. Zhu, J., Liao, J., Jin, W., Luo, B., Shen, P., Sotto, A., & Gao, C. (2019). Effect of functionality of cross-linker on sulphonated polysulfone cation exchange membranes for electrodialysis. Reactive and Functional Polymers, 138, 104-113. Zhu, S., Kingsbury, R. S., Call, D. F., & Coronell, O. (2018). Impact of solution composition on the resistance of ion exchange membranes. Journal of Membrane Science, 554, 39-47. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86428 | - |
| dc.description.abstract | 薄膜電容去離子技術 (Membrane capacitive deionization, MCDI)是一種節約 能源、對環境友善的脫鹽技術,本技術適用於半鹽水淡化與再生水利用的處理, 以期日後能作為淡水資源短缺的解方之一。離子交換膜 (Ion-exchangemembrane, IEM)是 MCDI 系統中的組成關鍵,利用其對離子的選擇性可提高本技術的電荷 效率及脫鹽量表現。以市面上可取得的商業用均相 IEM 為例,其雖具備良好電 化學特性,但價格高昂且機械強度較低,在長期操作下容易破裂、降低 IEM 之 使用壽命,導致整體系統的成本增加。反觀非均相 IEM,雖然其電化學特性表現 略低於均相 IEM,但其生產成本較低且機械強度良好。同時,近幾年針對非均相 IEM 的研究數量逐漸增加,藉由改善 IEM 製備流程以延長其使用壽命和降低操 作成本。此外,過去的相關研究缺乏針對薄膜電容去離子系統應用而研發的非均 相離子交換膜。因此,本研究將探討所製備的非均相 IEM 之薄膜特性並探討其 應用於 MCDI 系統之潛力。 本研究利用調整離子交換樹脂及聚合物的比例製成鑄膜液,塗布成膜以製備 非均相的陰離子(Anion-exchange membrane, AEM)和陽離子交換膜(Cation- exchange membrane, CEM),並分析製備之非均相 IEM 特性並應用於 MCDI 系統, 進行半鹽水溶液之脫鹽實驗,探討出適合應用於 MCDI 的 IEM 之製膜配方。結 果顯示,樹脂含量為 50 wt.% 的非均相 AEM 及 CEM 在薄膜特性分析中,具有 適宜之含水量 (20-35%)、離子交換能力(約1.65meq/g)及離子傳輸量(Cl-:23.91mg; Na+: 11.32 mg)。在電化學特性、薄膜強度及電吸附試驗穩定性的評比中,樹脂含 量為 50 wt.% 的非均相 AEM 及 CEM 擁有較好的綜合表現。同時,應用於 MCDI 系統中的非均相 AEM 及 CEM 亦成功促進系統整體的電吸附表現,並具有與商 業用均相 IEM 相似之電吸附效能指標。綜合上述,本研究成果研發出可與商業 用均相 IEM 匹敵之非均相 IEM 的最適配方,且具有應用於 MCDI 技術的潛力。 | zh_TW |
| dc.description.abstract | As an energy-saving and environmentally friendly desalination technology, membrane capacitive deionization (MCDI) has been developed for brackish water treatment to supply fresh water. Ion exchange membranes are key components of the MCDI system, enhancing the charge efficiency and salt adsorption capacity of CDI. Taking the commercial homogeneous IEM as an example, it exhibits good electrochemical properties but the high manufacturing cost and weak mechanical strength make it easily broken and decreases its lifetime, further leading to an increase in capital cost. From several past studies, fabricating heterogeneous IEM has become an effective strategy to lower the production cost and enhance membrane mechanical strength with structural polymer. However, heterogeneous IEM involves resin with functional groups and binder as structural former so leading to discontinuous functional groups distribution in the internal membrane, which results in poor electrochemical properties. In addition, past research lacks the development of heterogeneous IEM applied to MCDI systems. In this research, both heterogeneous AEMs and CEMs are fabricated with resin contents of 30, 50, and 70 wt.% to investigate the optimized resin content for the MCDI system. The results revealed that both heterogeneous AEM and CEM with 50 wt.% resin content struck a good balance between electrochemical property and membrane strength. The fabricated heterogeneous IEMs with 50 wt.% resin content were chosen to compete with commercial homogeneous IEMs. In the MCDI system, the fabricated heterogeneous IEMs (A50/C50) exhibited MDC of 10.41 mg/g, Em of 0.03 kWh/mole, and ! > 99%. The commercial homogeneous IEMs (ASE/CSE) applied to MCDI exhibited MDC of 9.23 mg/g, Em of 0.03 kWh/mole, and ! > 99%. It was found that the fabricated heterogeneous IEMs are competitive with the commercial homogeneous ones of the MCDI system. The results provide a suitable resin content to fabricate heterogeneous IEMs, further showing the great potential of fabricated heterogeneous IEMs in MCDI for future development. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:55:14Z (GMT). No. of bitstreams: 1 U0001-1708202215184700.pdf: 7882219 bytes, checksum: 925deea0c993f76c45d8fc1100fffb6e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 iii Abstract iv Contents vi List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objective 2 Chapter 2 Literature Review 3 2.1 Electro-driven Desalination Technologies 3 2.1.1 Electrodialysis 5 2.1.2 Capacitive Deionization 7 2.1.3 Membrane Capacitive Deionization 9 2.2 Ion Exchange Membrane 13 2.2.1 Homogeneous Ion Exchange Membrane 15 2.2.2 Heterogeneous Ion Exchange Membrane 17 2.3 Ion Exchange Membranes in MCDI 19 Chapter 3 Experimental Section 21 3.1 Materials and Instruments 21 3.2 Research Design 24 3.3 Preparation of Heterogeneous IEMs 25 3.4 Ion Exchange Membrane Characterizations 28 3.4.1 Morphological Characterizations 28 3.4.2 Physical Characterizations 29 1. Water Uptake 29 2. Contact Angle 29 3. Ion Exchange Capacity 30 3.4.3 Electrochemical Characterization - Ion Transport Number 31 3.5 Setup of MCDI System 33 3.6 Key Performance Indicators 35 Chapter 4 Results and Discussion 37 4.1 Particle Size Distribution of Ion Exchange Resin 37 4.2 Morphological Characteristics 38 4.3 Physical Characteristics 43 1. Water Uptake 43 2. Contact Angle 45 3. Ion Exchange Capacity 47 4.4 Electrochemical Characteristic: Ion Transport Number 49 4.5 Electrosorption Performance 54 4.5.1 Resin Content Effect on AEMs 54 4.5.2 Resin Content Effect on CEMs 60 4.5.3 Comparison of Fabricated and Commercial IEMs 66 Chapter 5 Conclusion and Suggestion 70 5.1 Conclusions 70 5.2 Suggestions 72 Reference 73 | |
| dc.language.iso | en | |
| dc.subject | 半鹽水脫鹽 | zh_TW |
| dc.subject | 非均相離子交換膜 | zh_TW |
| dc.subject | 離子交換樹脂 | zh_TW |
| dc.subject | 薄膜電容去離子技術 | zh_TW |
| dc.subject | 離子交換樹脂 | zh_TW |
| dc.subject | 非均相離子交換膜 | zh_TW |
| dc.subject | 電吸附表現 | zh_TW |
| dc.subject | 半鹽水脫鹽 | zh_TW |
| dc.subject | 電吸附表現 | zh_TW |
| dc.subject | 薄膜電容去離子技術 | zh_TW |
| dc.subject | Heterogeneous ion-exchange membranes | en |
| dc.subject | brackish water desalination | en |
| dc.subject | electrosorption performance | en |
| dc.subject | membrane capacitive deionization | en |
| dc.subject | ion exchange resin | en |
| dc.subject | Heterogeneous ion-exchange membranes | en |
| dc.subject | brackish water desalination | en |
| dc.subject | electrosorption performance | en |
| dc.subject | ion exchange resin | en |
| dc.subject | membrane capacitive deionization | en |
| dc.title | 訂製非均相陰離子及陽離子交換膜於薄膜電容去離子技術應用之研析 | zh_TW |
| dc.title | Fabrication of Tailor-made Heterogeneous Ion Exchange Membranes in Membrane Capacitive Deionization for Water Desalination | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王大銘(Da-Ming Wang),潘述元(Shu-Yuan Pan),林伯勳(Po-Hsun Lin) | |
| dc.subject.keyword | 非均相離子交換膜,離子交換樹脂,薄膜電容去離子技術,電吸附表現,半鹽水脫鹽, | zh_TW |
| dc.subject.keyword | Heterogeneous ion-exchange membranes,ion exchange resin,membrane capacitive deionization,electrosorption performance,brackish water desalination, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202202511 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-24 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202215184700.pdf | 7.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
