請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86421完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊宏智(Hong-Tsu Young) | |
| dc.contributor.author | Ping-Han Wu | en |
| dc.contributor.author | 吳秉翰 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:54:49Z | - |
| dc.date.copyright | 2022-08-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-19 | |
| dc.identifier.citation | 1. W. Liu, J. Hu, L. Jiang, J. Huang, J. Lu, J. Yin, Z. Qiu, H. Liu, C. Li, and S. Wang, 'Formation of laser-induced periodic surface nanometric concentric ring structures on silicon surfaces through single-spot irradiation with orthogonally polarized femtosecond laser double-pulse sequences,' Nanophotonics, 2021. 10(4): p. 1273-1283. 2. P. Liu, L. Jiang, J. Hu, X. Yan, B. Xia, and Y. Lu, 'Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass,' Optics letters, 2013. 38(22): p. 4613-4616. 3. MIIPS Box 640-Highest Resolution Pulse Shaper, B.S. Inc., Editor. 2010. 4. F. Théberge and S. Chin, 'Enhanced ablation of silica by the superposition of femtosecond and nanosecond laser pulses,' Applied Physics A, 2005. 80(7): p. 1505-1510. 5. A. Wang, L. Jiang, X. Li, Z. Wang, K. Du, and Y. Lu, 'Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films,' Optics & Laser Technology, 2018. 101: p. 298-303. 6. A. Peter, A. H. Lutey, S. Faas, L. Romoli, V. Onuseit, and T. Graf, 'Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces,' Optics & Laser Technology, 2020. 123: p. 105954. 7. Dual Beam Pulsed Laser Deposition (PLD) and Molecular Beam Epitaxy (MBE) Growth of Thin Film Materials. 2017 March 9]; Available from: https://research.ece.ncsu.edu/nanoengineering/pulsed-laser-deposition-pld-and-molecular-beam-epitaxy-mbe-growth-of-thermoelectric-and-thermomagetic-films/. 8. V. Babushok, F. DeLucia Jr, J. Gottfried, C. Munson, and A. Miziolek, 'Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,' Spectrochimica Acta Part B: Atomic Spectroscopy, 2006. 61(9): p. 999-1014. 9. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, 'Dynamics of femtosecond laser induced voidlike structures in fused silica,' Applied Physics Letters, 2009. 94(4): p. 041911. 10. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. Rayner, and P. Corkum, 'Exciton-seeded multiphoton ionization in bulk SiO 2,' Physical Review B, 2010. 81(21): p. 212301. 11. E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, 'Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,' Applied physics letters, 2006. 88(18): p. 181107. 12. A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. Campbell, 'Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,' Applied surface science, 1998. 127: p. 76-80. 13. S. Guizard, P. Martin, G. Petite, P. d'Oliveira, and P. Meynadier, 'Time-resolved study of laser-induced colour centres in SiO2,' Journal of Physics: Condensed Matter, 1996. 8(9): p. 1281. 14. I. Chowdhury, A. Wu, X. Xu, and A. Weiner, 'Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,' Applied Physics A, 2005. 81(8): p. 1627-1632. 15. I. H. Chowdhury, X. Xu, and A. M. Weiner, 'Ultrafast double-pulse ablation of fused silica,' Applied Physics Letters, 2005. 86(15): p. 151110. 16. H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. Hergott, L. Le Déroff, P. Salières, and O. Gobert, 'Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,' Laser and Particle Beams, 2000. 18(3): p. 489-494. 17. B. Zhou, A. Kar, M. Soileau, and X. Yu, 'Reducing feature size in femtosecond laser ablation of fused silica by exciton-seeded photoionization,' Optics letters, 2020. 45(7): p. 1994-1997. 18. C. Xu, L. Jiang, N. Leng, Y. Yuan, P. Liu, C. Wang, and Y. Lu, 'Ultrafast laser ablation size and recast adjustment in dielectrics based on electron dynamics control by pulse train shaping,' Chinese Optics Letters, 2013. 11(4): p. 041403. 19. N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, 'Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains,' Applied Physics A, 2012. 109(3): p. 679-684. 20. Y. Hagiwara, A. Hongo, and M. Obara. Ablation processing of biomedical materials with femtosecond double-pulse lasers through hollow fibers. in Commercial and Biomedical Applications of Ultrafast Lasers V. 2005. International Society for Optics and Photonics. 21. R. O. G. C. R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials. 2012: Springer. 22. P. Balling and J. Schou, 'Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,' Rep Prog Phys, 2013. 76(3): p. 036502. 23. S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, 'Dynamics of femtosecond laser interactions with dielectrics,' Applied Physics A, 2004. 79(7): p. 1695-1709. 24. B. Stuart, M. Feit, S. Herman, A. Rubenchik, B. Shore, and M. Perry, 'Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,' Physical review B, 1996. 53(4): p. 1749. 25. S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, 'The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology,' Opt Express, 2017. 25(13): p. 15161-15178. 26. J. del Hoyo, R. Meyer, L. Furfaro, and F. Courvoisier, 'Nanoscale confinement of energy deposition in glass by double ultrafast Bessel pulses,' Nanophotonics, 2021. 10(3): p. 1089-1097. 27. L. Jiang, J. Fang, Q. Cao, K. Zhang, P. Wang, Y. Yu, Q. Huang, and Y. Lu, 'Femtosecond laser high-efficiency drilling of high-aspect-ratio microholes based on free-electron-density adjustments,' Applied optics, 2014. 53(31): p. 7290-7295. 28. L. Jiang, P. Liu, X. Yan, N. Leng, C. Xu, H. Xiao, and Y. Lu, 'High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,' Optics letters, 2012. 37(14): p. 2781-2783. 29. D. Wortmann, M. Ramme, and J. Gottmann, 'Refractive index modification using fs-laser double pulses,' Optics Express, 2007. 15(16): p. 10149-10153. 30. T. Nagata, M. Kamata, and M. Obara, 'Optical waveguide fabrication with double pulse femtosecond lasers,' Applied Physics Letters, 2005. 86(25): p. 251103. 31. T. Nagata, M. Kamata, and M. Obara. Optical waveguide fabrication with tailored femtosecond laser pulses. in High-Power Laser Ablation V. 2004. International Society for Optics and Photonics. 32. S. Wu, D. Wu, J. Xu, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, 'Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding,' Optics express, 2013. 21(20): p. 24049-24059. 33. S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, 'Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,' Optics express, 2012. 20(27): p. 28893-28905. 34. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, 'Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,' Optics letters, 2011. 36(14): p. 2734-2736. 35. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, 'Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,' Applied surface science, 2013. 278: p. 7-12. 36. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, 'The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,' Optics letters, 2012. 37(4): p. 482-484. 37. L. Jiang, X. Shi, X. Li, Y. Yuan, C. Wang, and Y. Lu, 'Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains,' Optics express, 2012. 20(19): p. 21505-21511. 38. D. Chu, P. Yao, X. Sun, K. Yin, and C. Huang, 'Ablation enhancement of fused silica glass by femtosecond laser double-pulse Bessel beam,' JOSA B, 2020. 37(11): p. 3535-3541. 39. M. Zhao, J. Hu, L. Jiang, K. Zhang, P. Liu, and Y. Lu, 'Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control,' Scientific reports, 2015. 5(1): p. 1-9. 40. A. Tamura, T. Nishio, H. Suhara, and N. Nagayama. Improved efficiency for processing transparent materials by using double-pulse explosion drilling. in Laser-based Micro-and Nanoprocessing XIII. 2019. International Society for Optics and Photonics. 41. A. Tamura, T. Nishio, H. Suhara, and N. Nagayama. Double pulse explosion drilling of transparent materials. in Laser-based Micro-and Nanoprocessing XII. 2018. International Society for Optics and Photonics. 42. M. Gedvilas, J. Mikšys, J. Berzinš, V. Stankevič, and G. Račiukaitis, 'Multi-photon absorption enhancement by dual-wavelength double-pulse laser irradiation for efficient dicing of sapphire wafers,' Scientific reports, 2017. 7(1): p. 1-10. 43. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, 'Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,' Applied surface science, 2015. 336: p. 39-42. 44. I. Chowdhury, X. Xu, and A. Weiner, 'Ultrafast two-color ablation of fused silica,' Applied Physics A, 2006. 83(1): p. 49-52. 45. N. Miyamoto, Y. Ito, C. Wei, R. Yoshizaki, A. Shibata, I. Nagasawa, K. Nagato, and N. Sugita, 'Ultrafast internal modification of glass by selective absorption of a continuous-wave laser into excited electrons,' Optics Letters, 2020. 45(11): p. 3171-3174. 46. S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, 'Ultrafast Breakdown of dielectrics: Energy absorption mechanisms investigated by double pulse experiments,' Applied Surface Science, 2015. 336: p. 206-211. 47. C. Emmelmann and J. P. C. Urbina, 'Analysis of the influence of burst-mode laser ablation by modern quality tools,' Physics Procedia, 2011. 12: p. 172-181. 48. J. Lopez, S. Niane, G. Bonamis, P. Balage, E. Audouard, C. Hönninger, E. Mottay, and I. Manek-Hönninger, 'Percussion drilling in glasses and process dynamics with femtosecond laser GHz-bursts,' Optics Express, 2022. 30(8): p. 12533-12544. 49. V. Belloni, V. Sabonis, P. Di Trapani, and O. Jedrkiewicz, 'Burst mode versus single-pulse machining for Bessel beam micro-drilling of thin glass: Study and comparison,' SN Applied Sciences, 2020. 2(9): p. 1-12. 50. C. Chia, M. Suryana, and M. Hopkinson, 'In situ control and monitoring of photonic device intermixing during laser irradiation,' Optics express, 2011. 19(10): p. 9535-9540. 51. C.-C. Kuo, W.-C. Yeh, J.-B. Chen, and J.-Y. Jeng, 'Monitoring explosive crystallization phenomenon of amorphous silicon thin films during short pulse duration XeF excimer laser annealing using real-time optical diagnostic measurements,' Thin Solid Films, 2006. 515(4): p. 1651-1657. 52. P. Stradins, D. Young, Y. Yan, E. Iwaniczko, Y. Xu, R. Reedy, H. Branz, and Q. Wang, 'Real-time optical spectroscopy study of solid-phase crystallization in hydrogenated amorphous silicon,' Applied physics letters, 2006. 89(12): p. 121921. 53. M. Luo and Y. C. Shin, 'Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding,' Optics and Lasers in Engineering, 2015. 64: p. 59-70. 54. Y. Zhang, C. Zhang, L. Tan, and S. Li, 'Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using an auxiliary illuminant,' Optics & Laser Technology, 2013. 50: p. 167-175. 55. B. Qian, L. Taimisto, A. Lehti, H. Piili, O. Nyrhilä, A. Salminen, and Z. Shen, 'Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics,' Journal of Asian Ceramic Societies, 2014. 2(2): p. 123-131. 56. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, 'In situ imaging of hole shape evolution in ultrashort pulse laser drilling,' Optics express, 2010. 18(19): p. 20395-20400. 57. D. Günther, S. E. Jackson, and H. P. Longerich, 'Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers,' Spectrochimica Acta Part B: Atomic Spectroscopy, 1999. 54(3-4): p. 381-409. 58. Edgewave. DATA SHEETS. 2022; Available from: https://www.edge-wave.de/web/en/downloads/datenblatter/. 59. S. Physics. SPIT FIRE and MAI TAI DATA SHEETS. 2022; Available from: https://www.spectra-physics.com/en/ultrafast-laser-amplifiers. 60. P.-H. Wu, X.-Y. Yu, C.-W. Cheng, C.-H. Liao, S.-W. Feng, and H.-C. Wang, 'Ultrafast ablation dynamics in fused silica with a white light beam probe,' Optics express, 2011. 19(17): p. 16390-16400. 61. 頻波科技. 日本Photron高速攝影機功能介紹. 2022; Available from: https://www.pymble.com.tw/index.html?gclid=CjwKCAjwwo-WBhAMEiwAV4dybdRlyzi6RwPBsWyI2984YJxtLM_efi-xuRKP92Am4Q0mEqBWYXzHShoCnTUQAvD_BwE. 62. R. Fork, C. Shank, C. Hirlimann, R. Yen, and W. Tomlinson, '128-Femtosecond white-light continuum pulses,' Optics letters, 1983. 8(1): p. 1-3. 63. A. Brodeur and S. Chin, '134-Band-gap dependence of the ultrafast white-light continuum,' Physical review letters, 1998. 80(20): p. 4406. 64. M. Kolesik, G. Katona, J. Moloney, and E. Wright, '133-Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,' Physical review letters, 2003. 91(4): p. 043905. 65. W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, '135-Intensity clamping of a femtosecond laser pulse in condensed matter,' Optics Communications, 2002. 202(1-3): p. 189-197. 66. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, 'Laser-induced defects in fused silica by femtosecond IR irradiation,' Physical Review B, 2006. 73(22): p. 224117. 67. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, 'Various types of nonbridging oxygen hole center in high‐purity silica glass,' Journal of Applied Physics, 1990. 68(3): p. 1212-1217. 68. H.-J. Fitting, A. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, 'Radiation induced defects in SiO 2,' Radiation effects and defects in solids, 2002. 157(6-12): p. 575-581. 69. A. Ben-Yakar and R. L. Byer, 'Femtosecond laser ablation properties of borosilicate glass,' Journal of applied physics, 2004. 96(9): p. 5316-5323. 70. P.-H. Wu, H.-T. Young, and K.-M. Li, 'Picosecond dual-pulse laser ablation of fused silica,' Applied Physics A, 2022. 128(5): p. 1-7. 71. P.-H. Wu, C.-L. Hu, S.-W. Feng, H.-T. Young, M.-Y. Lu, and H.-C. Wang, 'Real time monitoring of fs laser annealing on indium tin oxide,' Optics & Laser Technology, 2019. 111: p. 380-386. 72. H. Morikawa and M. Fujita, 'Crystallization and electrical property change on the annealing of amorphous indium-oxide and indium-tin-oxide thin films,' Thin Solid Films, 2000. 359(1): p. 61-67. 73. G. Legeay, X. Castel, R. Benzerga, and J. Pinel, 'Excimer laser beam/ITO interaction: from laser processing to surface reaction,' physica status solidi c, 2008. 5(10): p. 3248-3254. 74. C. Lee, H. Lin, C. Li, L. Chen, C. Lee, C. Wu, and J. Huang, 'A study on electric properties for pulse laser annealing of ITO film after wet etching,' Thin Solid Films, 2012. 522: p. 330-335. 75. K. König, A. Uchugonova, M. Straub, H. Zhang, M. Licht, M. Afshar, D. Feili, and H. Seidel, 'Sub-100 nm material processing and imaging with a sub-15 femtosecond laser scanning microscope,' Journal of Laser Applications, 2012. 24(4): p. 042009. 76. C.-W. Cheng and C.-Y. Lin, 'High precision patterning of ITO using femtosecond laser annealing process,' Applied surface science, 2014. 314: p. 215-220. 77. W. G. Haines and R. H. Bube, 'Effects of heat treatment on the optical and electrical properties of indium–tin oxide films,' Journal of Applied Physics, 1978. 49(1): p. 304-307. 78. C.-W. Cheng, C.-Y. ing Lin, W.-C. Shen, Y.-J. Lee, and J.-S. Chen, 'Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,' Thin Solid Films, 2010. 518(23): p. 7138-7142. 79. Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, 'Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,' Vacuum, 2004. 75(2): p. 183-188. 80. 特鑄雜誌. EBSD的工作原理、結構、操作及分析. 2021; Available from: https://kknews.cc/science/bv4kjvm.html. 81. 百科知識. EBSD. 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86421 | - |
| dc.description.abstract | 近幾年隨著消費性電子產品、5G通訊、醫療器械與電動車產業的突飛猛進,透明材料已逐漸應用在這些領域的產品中,而超快雷射因有超短的脈衝寬度,提供材料冷加工機制,明顯降低加工區域周圍的熱影響區,儼然成為加工透明材料的主流工具之一。 超快雷射製程在透明材料精微加工中,大多伴隨著雷射剝除(Laser ablation)過程。若要加速製程開發速度,優化加工結果,就需了解剝除的加工機制,進而透過光學或製程手法改善剝除加工特性。本論文以超快雷射雙脈衝為光路架構,搭配三種不同光路,研究熔融石英被超快雷射照射產生的暫態破壞機制,改善熔融石英的剝除加工特性,與進行氧化銦錫玻璃的雷射退火線上監測。 本研究首先利用激發-探測原理,搭配800 nm, 170 fs, 1 kHz的激發脈衝與超快連續白光的探測脈衝去探索超快雷射與熔融石英之間的暫態破壞機制。結果發現於460 nm、560 nm、630 nm 三個波長有不同反射強度的光譜訊號。這些訊號與熔融石英被超快雷射激發後,產生的三種缺陷有關,包含Oxygen-deficient center、Peroxy radicals、Nonbridging oxygen hole center (NBOHC)。 接下來使用1064 nm, 10 ps, 100 kHz的雙脈衝進行熔融石英的雷射剝除製程研究。透過改變雙脈衝之間的延遲時間與功率比,來改變雷射對材料的剝除閾值。分析結果得知,當延遲時間為100 ps且功率比為5:5時,可以得到最低的剝除閾值-只有傳統單脈衝剝除閾值的一半。主要是因第一子脈衝照射材料產生的自縛激子種子或缺陷,增加了材料對第二子脈衝吸收率,而使剝除閾值下降。 最後使用800 nm, 100 fs, 80 MHz的激發脈衝搭配800 nm或400 nm的探測脈衝進行氧化銦錫玻璃雷射退火線上監測。研究使用激發脈衝進行雷射退火;在固定的延遲時間下,用單光儀+PD線上量測氧化銦錫玻璃退火處的探測脈衝穿透率。當退火未完成時,探測脈衝的穿透率隨著激發脈衝功率增加成等差級數增加,一旦激發脈衝功率可以對氧化銦錫玻璃產生退火改質,穿透率就會突然性的增加,用此突發訊號作為材料已發生退火改質的判斷。經此線上監測系統確認有改質的玻璃,再使用EBSD量測儀確認氧化銦錫玻璃已發生退火再結晶。 | zh_TW |
| dc.description.abstract | In recent years, transparent materials have been increasingly used in consumer electronics, 5G communications, and medical devices due to their optical clarity, electrical insulation, and mechanical strength. Ultrashort lasers are suitable tools for processing transparent materials from the characteristics of their high peak power and minimum thermal effects. In micro-machining of transparent materials, the ultrashort laser process is mostly accompanied by the mechanism of material ablation. In order to optimize the process results, it is necessary to look into the process of the ablation mechanism, and then improves the laser ablation processing characteristics through optical and/or process methods. In this study, a dual pulse-based optical setup was devised to investigate the interaction between the mechanism of ultrafast laser and fused silica aiming to improve the properties of the ablation processing, and perform in-situ monitoring of ITO glass laser annealing. This study firstly used a pump-probe spectroscopy of a white light beam probe with an 800 fs, 170 fs, 1 kHz femtosecond laser to study the ablation dynamics in fused silica. From the measurements, three characteristic signal bands were found at 460 nm, 560 nm, and 630 nm which are presumemablely related to the defects of fused silica after femtosecond laser irradiation, including the oxygen-deficient center, the peroxy radicals, and the nonbridging oxygen hole center (NBOHC). For the second major part of study, the ablation thresholds of 1064 nm, 10 ps, 100 kHz laser dual pulses in fused silica with different temporal separations and power ratios were investigated. An important result revealed that the lowest damage threshold of the dual-pulse ablation was at a temporal separation of 100 ps and a power ratio of 5:5, and this value was only half of the threshold of the conventional pulse ablation. The underlying physical mechanisms were discussed, and it was found that the first sub-pulses initially excited the electrons of the fused silica and subsequently induced self-trapped exciton seeds or defects generation at 100 ps temporal separations which increased the material absorption of the second sub-pulses and then varied the ablation threshold of the fused silica. A set of pump-probe systems for the in-situ monitoring of femtosecond laser annealing of ITO substrates was established as an extention of applicantion. A pump beam was used as the light source for thermal annealing, and a probe beam was used to in-situ monitor the transmittance variation of ITO. It was found that the pump beam energy was small, the transmittance changed arithmetically, and when the pump beam energy was sufficient to complete the modification of ITO, the transmittance variation rose suddenly and sharply, indicating that the thermal annealing modification had been completed in the irradiated area. An independent verification by the electron backscatter diffraction analysis indicated that the crystallographic directions of ITO after laser annealing were consistent. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:54:49Z (GMT). No. of bitstreams: 1 U0001-1308202220450000.pdf: 10181252 bytes, checksum: 5371a2f82e4395bb514bdbfa0ec70b6c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 謝辭 ii 摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xix 第1章 緒論 1 1.1 研究動機 1 1.2 研究方法介紹 1 1.3 論文架構 2 第2章 文獻回顧 4 2.1 雷射雙脈衝介紹 4 2.2 超快雷射與透明材料交互作用機制 6 2.2.1 超快雷射脈衝寬度的定義 7 2.2.2 電子激發 8 2.2.3 自由電子能量釋放 10 2.2.4 材料內部改質 13 2.2.5 皮秒脈衝與透明材料的作用機制 14 2.3 超快雷射雙脈衝應用於材料激發-探測實驗 15 2.3.1 簡併式激發-探測方法應用於透明材料加工 16 2.3.2 非簡併式激發-探測方法應用於透明材料加工 18 2.4 超快雷射雙脈衝加工透明材料 19 2.4.1 單波長-單脈寬雙脈衝加工 20 2.4.2 雙波長-單脈寬雙脈衝加工 32 2.4.3 雙波長-雙脈寬雙脈衝加工 34 2.4.4 多脈衝加工 36 2.5 雷射加工線上監測 37 2.5.1 雷射退火線上監測 37 2.5.2 其他雷射加工製程 40 2.6 小結 42 第3章 實驗設備簡介 48 3.1 皮秒脈衝雷射源 48 3.1.1 雷射源規格與外觀 48 3.1.2 雷射源架構 49 3.1.3 雷射源啟動與觸發控制 51 3.2 飛秒脈衝雷射源 58 3.2.1 雷射源規格與外觀 58 3.2.2 雷射源架構 60 3.2.3 雷射源啟動 68 第4章 超快雷射雙脈衝激發-探測熔融石英暫態破壞特性研究 75 4.1 激發-探測原理 75 4.2 超快雷射雙脈衝激發-探測光路介紹 77 4.3 超快連續白光產生原理與實驗: 79 4.3.1 超快連續白光產生原理 79 4.3.2 超快連續白光激發實驗 79 4.4 激發-探測實驗數據量測與分析 82 4.4.1 固定點激發-探測實驗與分析 82 4.4.2 更新點激發-探測實驗與分析 84 4.5 小結 86 第5章 超快雷射雙脈衝剝除加工熔融石英特性研究 88 5.1 超快雷射雙脈衝剝除加工光路介紹 88 5.2 雙脈衝延遲時間對剝除閾值與劃線寬度關係探討 91 5.2.1 材料剝除閾值的尋找方式 91 5.2.2 延遲時間對剝除閾值與劃線寬度之關係數據分析 92 5.2.3 雙脈衝加工的機制探討 96 5.3 雙脈衝功率比、延遲時間對剝除閾值關係探討 98 5.4 延遲時間100 ps下,雙脈衝功率比對剝除閾值關係探討 100 5.5 小結 101 第6章 超快雷射退火雙脈衝線上監測 102 6.1 超快雷射ITO退火簡介 102 6.2 超快雷射退火雙脈衝線上監測光路介紹 104 6.2.1 線上監測架設的可行性評估 104 6.2.2 線上監測光路架設 107 6.3 雷射退火線上監測與材料分析數據探討 108 6.3.1 雷射退火線上監測數據分析 108 6.3.2 ITO玻璃EBSD數據分析 111 6.4 小結 114 第7章 結論與未來展望 115 7.1 結論 115 7.2 未來展望 116 參考文獻 118 作者簡歷 125 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雷射剝除 | zh_TW |
| dc.subject | 雙脈衝 | zh_TW |
| dc.subject | 熔融石英 | zh_TW |
| dc.subject | 氧化銦錫 | zh_TW |
| dc.subject | 激發-探測 | zh_TW |
| dc.subject | 雷射退火 | zh_TW |
| dc.subject | 線上監測 | zh_TW |
| dc.subject | 雙脈衝 | zh_TW |
| dc.subject | 熔融石英 | zh_TW |
| dc.subject | 氧化銦錫 | zh_TW |
| dc.subject | 激發-探測 | zh_TW |
| dc.subject | 雷射剝除 | zh_TW |
| dc.subject | 雷射退火 | zh_TW |
| dc.subject | 線上監測 | zh_TW |
| dc.subject | ITO | en |
| dc.subject | In-situ monitoring | en |
| dc.subject | Fused silica | en |
| dc.subject | Pump-probe | en |
| dc.subject | Dual pulse | en |
| dc.subject | In-situ monitoring | en |
| dc.subject | Laser annealing | en |
| dc.subject | Laser ablation | en |
| dc.subject | Dual pulse | en |
| dc.subject | Fused silica | en |
| dc.subject | ITO | en |
| dc.subject | Pump-probe | en |
| dc.subject | Laser ablation | en |
| dc.subject | Laser annealing | en |
| dc.title | 超快雷射雙脈衝與透明材料交互作用之研究-應用於激發探測、精微加工與線上監測 | zh_TW |
| dc.title | Interactions between dual-pulse ultrafast laser and transparent materials- applications in pump-probe detection, micromachining and in-situ monitoring | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 李貫銘(Kuan-Ming Li) | |
| dc.contributor.oralexamcommittee | 郭佳儱(Chia-Lung Kuo),鄭中緯(Chung-Wei Cheng),何昭慶(Chao-Ching Ho) | |
| dc.subject.keyword | 雙脈衝,熔融石英,氧化銦錫,激發-探測,雷射剝除,雷射退火,線上監測, | zh_TW |
| dc.subject.keyword | Dual pulse,Fused silica,ITO,Pump-probe,Laser ablation,Laser annealing,In-situ monitoring, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU202202368 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-08-09 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202220450000.pdf 此日期後於網路公開 2027-08-09 | 9.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
