Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86404
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林新智zh_TW
dc.contributor.advisorHsin-Chih Linen
dc.contributor.author林丕晟zh_TW
dc.contributor.authorPi-Chen Linen
dc.date.accessioned2023-03-19T23:53:51Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] G. Ryan, A. Pandit, D. P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27, 2651–2670, (2006). https://doi.org/10.1016/J.BIOMATERIALS.2005.12.002.
[2] C. Lhotka, T. Szekeres, I. Steffan et al., Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements, J. Orthop. Res., 21, 189–195, (2003). https://doi.org/10.1016/S0736-0266(02)00152-3.
[3] Y. Chen, Z. Xu, C. Smith et al., Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater., 10, 4561–4573, (2014). https://doi.org/10.1016/j.actbio.2014.07.005.
[4] L. Jonášová, F. A. Müller, A. Helebrant et al., Biomimetic apatite formation on chemically treated titanium, Biomaterials, 25, 1187–1194, (2004). https://doi.org/10.1016/j.biomaterials.2003.08.009.
[5] A. C. Hänzi, I. Gerber, M. Schinhammer et al., On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys, Acta Biomater., 6, 1824–1833, (2010). https://doi.org/10.1016/j.actbio.2009.10.008.
[6] P. C. Lin, K. F. Lin, C. Chiu et al., Effect of atomic layer plasma treatment on TALD-ZrO2 film to improve the corrosion protection of Mg-Ca alloy, Surf. Coatings Technol., 427, 127811, (2021). https://doi.org/10.1016/J.SURFCOAT.2021.127811.
[7] P. C. Lin, K. Lin, Y. H. Lin et al., Improvement of Corrosion Resistance and Biocompatibility of Biodegradable Mg-Ca Alloy by ALD HfZrO2 Film, Coatings, 12, 212, (2022). https://doi.org/10.3390/COATINGS12020212.
[8] C. S. Goh, M. Gupta, A. E. W. Jarfors et al., Magnesium and Aluminium carbon nanotube composites, Key Eng. Mater., 425, 245–261, (2010). https://doi.org/10.4028/www.scientific.net.
[9] G. E. J. Poinern, S. Brundavanam, D. Fawcett, Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant, Am. J. Biomed. Eng., 2, 218–240, (2013). https://doi.org/10.5923/j.ajbe.20120206.02.
[10] M. Esmaily, J. E. Svensson, S. Fajardo et al., Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89, 92–193, (2017). https://doi.org/10.1016/j.pmatsci.2017.04.011.
[11] C. Talbot, Reactivity series, activity series and electrochemical series, Sch. Sci. Rev., 100, 390–391, (2019). https://www.sji.edu.sg/qql/slot/u560/News%20and%20Events/News%20Highlights/2019/Talbot%207352%20SSR_reactivity_series_activity_series_electrochemical_series.pdf.
[12] G. Song, Recent Progress in Corrosion and Protection of Magnesium Alloys, Adv. Eng. Mater., 7, 563–586, (2005). https://doi.org/10.1002/ADEM.200500013.
[13] F. Witte, V. Kaese, H. Haferkamp et al., In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, 3557–3563, (2005). https://doi.org/10.1016/J.BIOMATERIALS.2004.09.049.
[14] Y. Xin, T. Hu, P. K. Chu, Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO, Corros. Sci., 53, 1522–1528, (2011). https://doi.org/10.1016/j.corsci.2011.01.015.
[15] S. G. Ling, S. S. Zhe, Corrosion Behaviour of Pure Magnesium in a Simulated Body Fluid, Acta Physicochim. Sin., 22, 1222–1226, (2006). https://doi.org/10.3866/PKU.WHXB20061010.
[16] Z. Li, X. Gu, S. Lou et al., The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, 29, 1329–1344, (2008). https://doi.org/10.1016/j.biomaterials.2007.12.021.
[17] Z. Wen, C. Wu, C. Dai et al., Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid, J. Alloys Compd., 488, 392–399, (2009). https://doi.org/10.1016/J.JALLCOM.2009.08.147.
[18] X. Zhang, G. Yuan, L. Mao et al., Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys, Mater. Lett., 66, 209–211, (2012). https://doi.org/10.1016/J.MATLET.2011.08.079.
[19] S. Zhang, X. Zhang, C. Zhao et al., Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater., 6, 626–640, (2010). https://doi.org/10.1016/J.ACTBIO.2009.06.028.
[20] X. Gu, Y. Zheng, Y. Cheng et al., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30, 484–498, (2009). https://doi.org/10.1016/J.BIOMATERIALS.2008.10.021.
[21] S. S. Abd El-Rahman, Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment), Pharmacol. Res., 47, 189–194, (2003). https://doi.org/10.1016/S1043-6618(02)00336-5.
[22] C. Blawert, W. Dietzel, E. Ghali et al., Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Adv. Eng. Mater., 8, 511–533, (2006). https://doi.org/10.1002/adem.200500257.
[23] M. I. Jamesh, G. Wu, Y. Zhao et al., Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer’s solution and simulated body fluid, Corros. Sci., 91, 160–184, (2015). https://doi.org/10.1016/j.corsci.2014.11.015.
[24] K. Yang , C. Zhou, H. Fan et al., Bio-Functional Design, Application and Trends in Metallic Biomaterials, Int. J. Mol. Sci., 19, 24, (2017). https://doi.org/10.3390/IJMS19010024.
[25] S. E. Potts, L. Schmalz, M. Fenker et al., Ultra-Thin Aluminium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Corrosion Protection, J. Electrochem. Soc., 158, 132, (2011). https://doi.org/10.1149/1.3560197.
[26] J. S. Daubert, G. T. Hill, H. N. Gotsch et al., Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic layer deposition, ACS Appl. Mater. Interfaces, 9, 4192–4201, (2017). https://doi.org/10.1021/acsami.6b13571.
[27] S. Mirhashemihaghighi, J. Światowska, V. Maurice et al., Electrochemical and Surface Analysis of the Corrosion Protection of Copper by Nanometer-Thick Alumina Coatings Prepared by Atomic Layer Deposition, J. Electrochem. Soc., 162, 377–384, (2015). https://doi.org/10.1149/2.0081508jes.
[28] Z. Chai, Y. Liu, J. Li et al., Ultra-thin Al2O3 films grown by atomic layer deposition for corrosion protection of copper, RSC Adv., 4, 50503–50509, (2014). https://doi.org/10.1039/c4ra09179e.
[29] M. Peron, A. BinAfif, A. Dadlani et al., Comparing physiologically relevant corrosion performances of Mg AZ31 alloy protected by ALD and sputter coated TiO2, Surf. Coatings Technol., 395, (2020). https://doi.org/10.1016/j.surfcoat.2020.125922.
[30] C. Liu, Q. Bi, A. Leyland et al., An electrochemical impedance spectroscopy study of the corrosion behavior of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrossion behaviour, Corros. Sci., 45, 1257–1273, (2003). https://doi.org/10.1016/S0010-938X(02)00214-7.
[31] Y. F. Zheng, X. N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng. R Reports., 77, 1–34, (2014). https://doi.org/10.1016/J.MSER.2014.01.001.
[32] J. Emsley, Nature’s building blocks : everything you need to know about the elements, Oxford Univ. Press., 699, (2011). https://edu.rsc.org/review/natures-building-blocks-an-a-z-guide-to-the-elements/2021175.article.
[33] G. Mani, M. D. Feldman, D. Patel et al., Coronary stents: A materials perspective, Biomaterials, 28, 1689–1710, (2007). https://doi.org/10.1016/J.BIOMATERIALS.2006.11.042.
[34] A. Drynda, N. Deinet, N. Braun et al., Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes, J. Biomed. Mater. Res. Part A., 91, 360–369, (2009). https://doi.org/10.1002/JBM.A.32235.
[35] G. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 49, 1696–1701, (2007). https://doi.org/10.1016/J.CORSCI.2007.01.001.
[36] H. E. Friedrich, B. L. Mordike, Magnesium technology: Metallurgy, design data, applications, Magnes. Technol. Metall. Des. Data, Appl., 1–677, (2006). https://doi.org/10.1007/3-540-30812-1.
[37] H. B. Profijt, S. E. Potts, M. C. M.van deSanden et al., Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges, J. Vac. Sci. Technol., 29, 050801, (2011). https://doi.org/10.1116/1.3609974.
[38] M. Leskelä, M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, 409, 138–146, (2002). https://doi.org/10.1016/S0040-6090(02)00117-7.
[39] H. Hauser, R. Chabicovsky, K. Riedling, Handbook of Thin Films, Elsevier Wordmark, (2001).
[40] M. Tammenmaa, H. Antson, M. Asplund, et al., Alkaline earth sulfide thin films grown by atomic layer epitaxy, J. Cryst. Growth, 84, 151–154, (1987). https://doi.org/10.1016/0022-0248(87)90122-9.
[41] M. Nieminen, M. Putkonen, L. Niinistö, Formation and stability of lanthanum oxide thin films deposited from β-diketonate precursor, Appl. Surf. Sci., 174, 155–166, (2001). https://doi.org/10.1016/S0169-4332(01)00149-0.
[42] M. Putkonen, T. Sajavaara, L. S. Johansson et al., Low‐Temperature ALE Deposition of Y2O3 Thin Films from β‐Diketonate Precursors, Chem. Vap. Depos., 7, 44–50, (2001). https://doi.org/10.1021/cm050624+.
[43] K. Kukli, M. Ritala, M. Schuisky et al., Atomic Layer Deposition of Titanium Oxide from TiI4 and H2O2, Chem. Vap. Depos., 6, 303–310, (2000). https://doi.org/10.1002/1521-3862(200011)6:6<303::AID-CVDE303>3.0.CO;2-J.
[44] K. Kukli, K. Forsgren, M. Ritala et al., Dielectric Properties of Zirconium Oxide Grown by Atomic Layer Deposition from Iodide Precursor, J. Electrochem. Soc., 148, 227, (2001). https://doi.org/10.1149/1.1418379/XML.
[45] K. Kukli, K. Forsgren, J. Aarik et al., Atomic layer deposition of zirconium oxide from zirconium tetraiodide, water and hydrogen peroxide, J. Cryst. Growth, 231, 262–272, (2001). https://doi.org/10.1016/S0022-0248(01)01449-X.
[46] M. Schuisky, A. Hårsta, A. Aidla et al., Atomic Layer Chemical Vapor Deposition of TiO2 Low Temperature Epitaxy of Rutile and Anatase, J. Electrochem. Soc., 147, 3319, (2000). https://doi.org/10.1149/1.1393901/XML.
[47] P. Tägtström, P. Maårtensson, U. Jansson et al., Atomic Layer Epitaxy of Tungsten Oxide Films Using Oxyfluorides as Metal Precursors, J. Electrochem. Soc., 146, 3139–3143, (1999). https://doi.org/10.1149/1.1392445/XML.
[48] H. Siimon, J. Aarik, Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors, J. Phys. D. Appl. Phys., 30, 1725, (1997). https://doi.org/10.1088/0022-3727/30/12/006.
[49] B. H. Lee, J. K. Hwang, J. W. Nam et al., Low-temperature atomic layer deposition of copper metal thin films: Self-limiting surface reaction of copper dimethylamino-2-propoxide with diethylzinc, Angew. Chemie, 48, 4536–4539, (2009). https://doi.org/10.1002/ANIE.200900414.
[50] J. Aarik, A. Aidla, H. Mändar et al., Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition, J. Cryst. Growth, 220, 105–113, (2000). https://doi.org/10.1016/S0022-0248(00)00831-9.
[51] K. E. Elers, M. Ritala, M. Leskelä et al., NbCl5 as a precursor in atomic layer epitaxy, Appl. Surf. Sci., 82–83, 468–474, (1994). https://doi.org/10.1016/0169-4332(94)90260-7.
[52] M. Juppo, M. Vehkamäki, M. Ritala et al., Deposition of molybdenum thin films by an alternate supply of MoCl5 and Zn, J. Vac. Sci. Technol., 16, 2845, (1998). https://doi.org/10.1116/1.581430.
[53] R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/ water process, J. Appl. Phys., 97, 121301, (2005). https://doi.org/10.1063/1.1940727.
[54] S. M. George, Atomic layer deposition: An overview, Chem. Rev., 110, 111–131, (2010). https://doi.org/10.1021/cr900056b.
[55] M. H. Park, T. Schenk, C. S. Hwang et al., Chapter 8 Impact of Electrodes on the Ferroelectric Properties, Ferroelectr. Doped Hafnium Oxide Mater. Prop. Device., 341–364, (2019). https://doi.org/10.1016/B978-0-08-102430-0.00008-5.
[56] T. Gougousi, Atomic layer deposition of high-k dielectrics on III–V semiconductor surfaces, Prog. Cryst. Growth Charact. Mater., 62, 1–21, (2016). https://doi.org/10.1016/J.PCRYSGROW.2016.11.001.
[57] K. Arts, H. Thepass, M. A. Verheijen et al., Impact of ions on film conformality and crystallinity during plasma-assisted atomic layer deposition of TiO2, Chem. Mater., 33, 5002–5009, (2021). https://doi.org/10.1021/acs.chemmater.1c00781.
[58] W. Ren, B. Liu, B. Bao et al., Removing overhang and increasing atom re-deposition of sputtering to enable gap-filling scalability, Surf. Coatings Technol., 353, 309–315, (2018). https://doi.org/10.1016/J.SURFCOAT.2018.08.080.
[59] H. Goto, K. Shibahara, S. Yokoyama, Atomic layer controlled deposition of silicon nitride with self‐limiting mechanism, Appl. Phys. Lett., 68, 3257, (1998). https://doi.org/10.1063/1.116566.
[60] C. Das, K. Henkel, M. Tallarida et al., Thermal and plasma enhanced atomic layer deposition of TiO2: Comparison of spectroscopic and electric properties, J. Vac. Sci. Technol., 33, 01A144, (2014). https://doi.org/10.1116/1.4903938.
[61] B. Zhao, F. Mattelaer, G. Rampelberg et al., Thermal and Plasma-Enhanced Atomic Layer Deposition of Yttrium Oxide Films and the Properties of Water Wettability, ACS Appl. Mater. Interfaces, 12, 3179–3187, (2020). https://doi.org/10.1021/acsami.9b18412.
[62] J. Hur, N. Tasneem, G. Choe et al., Direct comparison of ferroelectric properties in Hf0.5Zr0.5O2 between thermal and plasma-enhanced atomic layer deposition, Nanotechnology, 31, 505707, (2020). https://doi.org/10.1088/1361-6528/ABA5B7.
[63] E. Marin, A. Lanzutti, L. Guzman et al., Corrosion protection of AISI 316 stainless steel by ALD alumina/titania nanometric coatings, J. Coatings Technol. Res., 8, 655–659, (2011). https://doi.org/10.1007/s11998-011-9327-0.
[64] M. Fusco, C. Oldham, G. Parsons, Investigation of the Corrosion Behavior of Atomic Layer Deposited Al2O3/TiO2 Nanolaminate Thin Films on Copper in 0.1 M NaCl, Materials (Basel), 12, 672, (2019). https://doi.org/10.3390/ma12040672.
[65] Q. Yang, W. Yuan, X. Liu et al., Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility, Acta Biomater., 58, 515–526, (2017). https://doi.org/10.1016/j.actbio.2017.06.015.
[66] W. H. Lee, W. C. Kao, Y. T. Yin et al., Sub-nanometer heating depth of atomic layer annealing, Appl. Surf. Sci., 525, (2020). https://doi.org/10.1016/j.apsusc.2020.146615.
[67] W. H. Lee, Y. T. Yin, P. H. Cheng et al., Nanoscale GaN Epilayer Grown by Atomic Layer Annealing and Epitaxy at Low Temperature, ACS Sustain. Chem. Eng., 7, 487–495, (2019). https://doi.org/10.1021/acssuschemeng.8b03982.
[68] K. W. Huang, T. J. Chang, C. Y. Wang et al., Leakage current lowering and film densification of ZrO2 high-k gate dielectrics by layer-by-layer, in-situ atomic layer hydrogen bombardment, Mater. Sci. Semicond. Process, 109, (2020). https://doi.org/10.1016/j.mssp.2020.104933.
[69] T. J. Chang, W. H. Lee, C. I. Wang et al., High- K Gate Dielectrics Treated with in Situ Atomic Layer Bombardment, ACS Appl. Electron. Mater., 1, 1091–1098, (2019). https://doi.org/10.1021/acsaelm.9b00080.
[70] S. H. Yi, K. W. Huang, H.C.Lin et al., Low-temperature crystallization and paraelectric-ferroelectric phase transformation in nanoscale ZrO2 thin films induced by atomic layer plasma treatment, J. Mater. Chem. C, 8, 3669–3677, (2020). https://doi.org/10.1039/c9tc04801d.
[71] I. Stabrawa, A. Kubala-Kukuś, D. Banaś et al., Characterization of the morphology of titanium and titanium (IV) oxide nanolayers deposited on different substrates by application of grazing incidence X-ray diffraction and X-ray reflectometry techniques, Thin Solid Films, 671, 103–110, (2019). https://doi.org/10.1016/J.TSF.2018.12.034.
[72] A. Chauhan, Deformation and damage mechanisms of ODS steels under high-temperature cyclic loading, (2018). https://doi.org/10.5445/IR/1000080339.
[73] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27, 2907–2915, (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017.
[74] C. Nyby, X. Guo, J. E. Saal et al., Electrochemical metrics for corrosion resistant alloys, Sci. Data, 8, 1–11, (2021). https://doi.org/10.1038/s41597-021-00840-y.
[75] M. V. Berridge, A. S. Tan, Trans-plasma membrane electron transport: A cellular assay for NADH- and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1, Protoplasma, 205, 74–82, (1998). https://doi.org/10.1007/BF01279296.
[76] M. Ishiyama, M. Shiga, K. Sasamoto et al., A New Sulfonated Tetrazolium Salt That Produces a Highly Water-Soluble Formazan Dye, Chem. Pharm. Bull., 41, 1118–1122, (1993). https://doi.org/10.1248/CPB.41.1118.
[77] J. F. Burd, M. Usategui-Gomez, A colorimetric assay for serum lactate dehydrogenase, Clin. Chim. Acta, 46, 223–227, (1973). https://doi.org/10.1016/0009-8981(73)90174-5.
[78] S. N. Basahel, T. T. Ali, M. Mokhtar et al., Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale Res. Lett., 10, (2015). https://doi.org/10.1186/s11671-015-0780-z.
[79] J. Luo, X. Luo, J. Crittenden et al., Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2), Environ. Sci. Technol., 49, 11115–11124, (2015). https://doi.org/10.1021/acs.est.5b02903.
[80] Z. Zhang, M. G. Lagally, Atomistic processes in the early stages of thin-film growth, Science, 276, 377–383, (1997). https://doi.org/,0.1126/science.276.5311.377.
[81] H. B. Profijt, P. Kudlacek, M. C. M.van deSanden et al., Ion and Photon Surface Interaction during Remote Plasma ALD of Metal Oxides, J. Electrochem. Soc., 158, 88, (2011). https://doi.org/10.1149/1.3552663.
[82] H. B. Profijt, M. C. M.van deSanden, W. M. M. Kessels, Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth, J. Vac. Sci. Technol., 31, 01A106-1/10, (2013). https://doi.org/10.1116/1.4756906.
[83] J. N. Sun, D. W. Gidley, Y. Hu et al., Depth-profiling plasma-induced densification of porous low-k thin films using positronium annihilation lifetime spectroscopy, Appl. Phys. Lett., 81, 1447–1449, (2002). https://doi.org/10.1063/1.1501767.
[84] P. Kofstad, D. J. Ruzicka, On the Defect Structure of ZrO2 and HfO2, J. Electrochem. Soc., 110, 181, (1963). https://doi.org/10.1149/1.2425707.
[85] S. Y. Wang, D. Y. Lee, T. Y. Huang et al., Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer, Nanotechnology, 21, 495201, (2010). https://doi.org/10.1088/0957-4484/21/49/495201.
[86] F. Guillemot, M. C. Porté, C. Labrugère et al., Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: Interest for titanium biomedical applications, J. Colloid Interface Sci., 255, 75–78, (2002). https://doi.org/10.1006/jcis.2002.8623.
[87] Y. M. Wang, Y. S. Li, P. C. Wong et al., XPS studies of the stability and reactivity of thin films of oxidized zirconium, Appl. Surf. Sci., 72, 237–244, (1993). https://doi.org/10.1016/0169-4332(93)90192-E.
[88] Y. S. Li, P. C. Wong, K. A. R. Mitchell, XPS investigations of the interactions of hydrogen with thin films of zirconium oxide II. Effects of heating a 26 Å thick film after treatment with a hydrogen plasma, Appl. Surf. Sci., 89, 263–269, (1995). https://doi.org/10.1016/0169-4332(95)00032-1.
[89] I. Nakamura, N. Negishi, S. Kutsuna et al., Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. A Chem., 161, 205–212, (2000). https://doi.org/10.1016/S1381-1169(00)00362-9.
[90] C. Zhu, C. Li, M. Zheng et al., Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation, ACS Appl. Mater. Interfaces, 7, 22355–22363, (2015). https://doi.org/10.1021/ACSAMI.5B06131.
[91] J. An, T. Usui, M. Logar et al., Plasma processing for crystallization and densification of atomic layer deposition BaTiO3 thin films, ACS Appl. Mater. Interfaces, 6, 10656–10660, (2014). https://doi.org/10.1021/am502298z.
[92] P. Li, J. F. McDonald, T. M. Lu, Densification induced dielectric properties change in amorphous BaTiO3 thin films, J. Appl. Phys., 71, 5596–5600, (1992). https://doi.org/10.1063/1.350538.
[93] X. Li, Z. Weng, W. Yuan et al., Corrosion resistance of dicalcium phosphate dihydrate/poly(lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy, Corros. Sci., 102, 209–221, (2016). https://doi.org/10.1016/j.corsci.2015.10.010.
[94] R. Sokkalingam, K. Sivaprasad, M. Duraiselvam et al., Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior, J. Alloys Compd., 817, 153163, (2020). https://doi.org/10.1016/j.jallcom.2019.153163.
[95] T. J. Carter, L. A. Cornish, Hydrogen in metals, Eng. Fail. Anal., 8, 113–121, (2001). https://doi.org/10.1016/S1350-6307(99)00040-0.
[96] A. Drynda, T. Hassel, R. Hoehn et al., Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications, J. Biomed. Mater. Res. Part A, 93, 764–775, (2009). https://doi.org/10.1002/jbm.a.32582.
[97] N. Hort, Y. Huang, K. U. Kainer, Intermetallics in Magnesium Alloys, Adv. Eng. Mater., 8, 235–240, (2006). https://doi.org/10.1002/adem.200500202.
[98] D. Vanderbilt, X. Zhao, D. Ceresoli, Structural and dielectric properties of crystalline and amorphous ZrO2, Thin Solid Films, 486, 125–128, (2005). https://doi.org/10.1016/j.tsf.2004.11.232.
[99] D. Ceresoli, D. Vanderbilt, Structural and dielectric properties of amorphous ZrO2 and HfO2, Phys. Rev. B, 74, 125108, (2006). https://doi.org/10.1103/PhysRevB.74.125108.
[100] M. Copel, M. Gribelyuk, E. Gusev, Structure and stability of ultrathin zirconium oxide layers on Si(001), Appl. Phys. Lett., 76, 436, (2000). https://doi.org/10.1063/1.125779.
[101] E. T. Ryan, J. Martin, K. Junker et al., Effect of material properties on integration damage in organosilicate glass films, J. Mater. Res., 16, 3335–3338, (2001). https://doi.org/10.1557/JMR.2001.0458.
[102] A. N. Papathanassiou, Density scaling of the diffusion coefficient at various pressures in viscous liquids, Phys. Rev. E, 79, 032501, (2009). https://doi.org/10.1103/PhysRevE.79.032501.
[103] A. Sanz, T. Hecksher, H. W.Hansen et al., Experimental Evidence for a State-Point-Dependent Density-Scaling Exponent of Liquid Dynamics, Phys. Rev. Lett., 122, 055501, (2019). https://doi.org/10.1103/PhysRevLett.122.055501.
[104] A. International, ASM INTERNATIONAL ® The Materials Information Company, (n.d.).
[105] A. Onodera, M. Takesada, Ferroelectricity in Simple Binary Crystals, Crystals, 7, (2017). https://doi.org/10.3390/cryst7080232.
[106] S. Magaino, A. Kawaguchi, A. Hirata et al., Spectrum Analysis of Corrosion Potential Fluctuations for Localized Corrosion of Type 304 Stainless Steel, J. Electrochem. Soc., 134, 2993–2997, (1987). https://doi.org/10.1149/1.2100328/XML.
[107] K. Yamakawa, H. Inoue, Analysis of corrosion potential fluctuation for stress corrosion cracking, Corros. Sci., 31, 503–508, (1990). https://doi.org/10.1016/0010-938X(90)90153-V.
[108] H. Sun, K. Cooke, G. Eitzinger, et al., Development of PVD coatings for PEMFC metallic bipolar plates, Thin Solid Films, 528, 199–204, (2013). https://doi.org/10.1016/J.TSF.2012.10.094.
[109] Y. M. Kong, C. J. Bae, S. H. Lee et al., Improvement in biocompatibility of ZrO2–Al2O3 nano-composite by addition of HA, Biomaterials, 26, 509–517, (2005). https://doi.org/10.1016/J.BIOMATERIALS.2004.02.061.
[110] C. García-Saucedo, J. A. Field, L. Otero-Gonzalez et al., Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae, J. Hazard. Mater., 192, 1572–1579, (2011). https://doi.org/10.1016/J.JHAZMAT.2011.06.081.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86404-
dc.description.abstract過於快速的生物降解率是阻礙鎂合金在生物醫學領域應用的一個重要議題。透過原子層沉積(ALD)的獨有特性,原子層沉積被認為是一種適合用於提升鎂合金性能的方式。一般而言,製備上較厚或多層結構的ALD膜能達到較高耐腐蝕阻抗,而本研究採用一種逐層電漿處理的原子層電漿處理技術來提升透過熱驅動原子層沉積模式生長的二氧化鋯膜的腐蝕保護特性。原子層退火對材料特性的影響具有時間依賴性,30秒的原子層退火時間能提供二氧化鋯膜薄膜最大限度的極化阻抗提升,由原先的1.8kΩ·cm2提升至到74.7kΩ·cm2,這來自於高程度的結晶性提升,以及氧空缺數量達40個百分比的改善。與增加厚度效應相比較,30秒的原子層退火於二氧化鋯薄膜的腐蝕阻抗提升效果相當於厚度由200個循環增加到300個循環的效果,甚至原子層退火能使熱驅動原子層沉積所製備出的二氧化鋯薄膜,較電漿增益型原子層沉積製備的薄膜具有更高的腐蝕阻抗。透過等效電路研究和腐蝕行為研究,原子層退火顯著改善薄膜結晶度和缺陷,從而抑制離子擴散的機制。
本研究中也透過XRD與TEM的分析確認二氧化鉿鋯能成功的被製備於擠製態的鎂鈣合金表面。而且,二氧化鉿鋯薄膜可以提高擠製態鎂鈣合金的腐蝕阻抗,從而降低鎂鈣合金的生物降解率。腐蝕電流密度、pH值評估和腐蝕表面影像提供腐蝕速率提高的證據。與二氧化鋯薄膜相比,二氧化鉿鋯薄膜表現出更好的短期耐腐蝕性能。並且納入WST-1測定和LDH試驗,以表明二氧化鉿鋯薄膜毒性低,適用於生物植入物的保護塗層。
zh_TW
dc.description.abstractExcessive biodegradation rate is a critical problem for magnesium alloys in the biomedical field. With its unique properties, atomic layer deposition (ALD) is seen as a potential method that can be applied in corrosion protection for magnesium alloys. So far, using thicker film or multilayer structure design can enhance the corrosion resistance of ALD films. However, extended techniques of ALD have not been applied to such areas. In the first part of this work, atomic layer plasma annealing (ALA) that ALD films are exposed by in-situ plasma treatment can effectively enhance the corrosion protection of ZrO2 film deposited by thermal ALD mode (TALD-ZrO2). As the ALA effect is time-dependent, the influence of ALA time is investigated. The maximum enhancement of polarization resistance of ZrO2 films from 1.8kΩ·cm2 to 74.7kΩ·cm2 is found when the ALA time is 30s, which is because of the high-level crystallization and dramatic improvement of oxygen vacancy of 40%. In addition, the maximum ALA effect is relevant to the thickness effect that increases the film thickness from 200 cycles to 300 cycles. In the first part of this work, the ALA effect on the characteristics and corrosion properties of ZrO2 films are studied. Furthermore, by discussing the equivalent circuit and corrosion behavior of the system with the characteristics, the improvement of the crystallinity and defects of the films leads to the suppression of mass transfer which is the main mechanism of the ALA effect.
In the second part of this study, HfZrO2 (HZO) films are deposited on an as-extruded Mg-Ca alloy. The identification of the compound is processed by XRD and TEM analysis. When the as-extruded Mg-Ca alloy is covered by the HZO films, the corrosion resistance of the alloy is enhanced. This result reflects in the decrease in corrosion rate. By involving HfO layer to ZrO2, continuous electrochemical impedance spectroscopy (EIS) is used to measure the decline of corrosion resistance. The corrosion resistance of HZO films decreases faster than that of ZrO2 films within the certain period. As the corrosion properties of HZO films are investigated, its biocompatibility is confirmed by 3-day WST-1 assay and LDH test. HZO films have low toxicity signifying that HZO films are suitable as a protective layer for biomedical implants.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:53:51Z (GMT). No. of bitstreams: 1
U0001-2008202216562400.pdf: 11001532 bytes, checksum: 8762ad9d063fbcce64142dd0700dd0ea (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 I
Table of Contents II
List of Figures IV
List of Tables XII
Abstract XIII
中文摘要 XV
Chapter 1 Preface 1
Chapter 2 Literature review 3
2.1 Improvement in the corrosion rate of magnesium alloy 6
2.1.1 Composition 6
2.1.2 Processing 8
2.1.3 Surface modification 9
2.2 Atomic layer deposition (ALD) 10
2.2.1 Plasma-enhanced ALD 21
2.2.2 Application of ALD on corrosion protection of metal 24
2.2.3 Atomic layer annealing (ALA) 27
Chapter 3 Design of experiment 32
3.1 Magnesium-calcium alloy preparation and pretreatment 32
3.2 ALD film fabrication 33
3.3 Characterization of Mg-Ca alloy and ALD film 36
3.3.1 Crystal structure, crystallinity, and film density 36
3.3.2 Defect analysis 37
3.3.3 Cross-sectional observation of ALD film 37
3.3.4 Morphology and element distribution observation 38
3.3.5 Corrosion properties measurement 39
3.3.6 Biocompatibility 41
Chapter 4 Results and discussion 42
4.1 Effect of atomic layer annealing on TALD-ZrO2 film to improve the corrosion protection of Mg-Ca alloy 42
4.1.1 Microstructure analysis 42
4.1.2 Electron configuration 47
4.1.3 Thickness measurement 49
4.1.4 Corrosion resistance measurement 50
4.1.5 Corrosion rate measurement 54
4.1.6 pH value evolution 56
4.1.7 Identification of ALA time effect on corrosion protection 57
4.1.8 Surface morphology 63
4.1.9 Element distribution 64
4.1.10 Mechanism discussion 72
4.2 Improvement of corrosion resistance and biocompatibility of biodegradable Mg-Ca alloy by ALD HfZrO2 film 77
4.2.1 Microstructure analysis 77
4.2.2 Characteristics of HZO film 79
4.2.3 Corrosion protection of HZO film 82
4.2.4 Corrosion rate of Mg-Ca alloy with/without HZO film 82
4.2.5 Biocompatibility 92
Chapter 5 Conclusion 94
Reference 96
-
dc.language.isoen-
dc.subject原子層退火zh_TW
dc.subject生物可降解植體zh_TW
dc.subject鎂鈣合金zh_TW
dc.subject腐蝕保護zh_TW
dc.subject原子層退火zh_TW
dc.subject原子層沉積zh_TW
dc.subject生物可降解植體zh_TW
dc.subject鎂鈣合金zh_TW
dc.subject腐蝕保護zh_TW
dc.subject原子層沉積zh_TW
dc.subjectatomic layer annealing (ALA)en
dc.subjectmagnesium-calcium alloyen
dc.subjectbiodegradable implantsen
dc.subjectbiodegradable implantsen
dc.subjectmagnesium-calcium alloyen
dc.subjectcorrosion protectionen
dc.subjectatomic layer annealing (ALA)en
dc.subjectatomic layer deposition (ALD)en
dc.subjectatomic layer deposition (ALD)en
dc.subjectcorrosion protectionen
dc.title應用原子層沉積技術改善可生物降解鎂鈣合金抗蝕性之研究zh_TW
dc.titleImprovement of corrosion resistance of biodegradable Mg-Ca alloy by atomic layer deposition techniqueen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳敏璋;林招松;林昆明;楊凱強;丘群zh_TW
dc.contributor.oralexamcommitteeMiin-Jang Chen;Chao-Sung Lin;Kun-Ming Lin;Kai-Chiang Yang;Chun Chiuen
dc.subject.keyword原子層沉積,原子層退火,腐蝕保護,鎂鈣合金,生物可降解植體,zh_TW
dc.subject.keywordatomic layer deposition (ALD),atomic layer annealing (ALA),corrosion protection,magnesium-calcium alloy,biodegradable implants,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202202611-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-08-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2027-08-21-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  此日期後於網路公開 2027-08-21
10.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved