Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭典翰(Dian-Han Kuo)
dc.contributor.authorJian-Liang Chenen
dc.contributor.author陳建良zh_TW
dc.date.accessioned2023-03-19T23:53:29Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-22
dc.identifier.citationAkiyama, Y., Agata, K., and Inoue, T. (2018). Coordination between binocular field and spontaneous self-motion specifies the efficiency of planarians’ photo-response orientation behavior. Communications Biology 1. doi: 10.1038/s42003-018-0151-2. Arendt, D. (2003). Evolution of eyes and photoreceptor cell types. International Journal of Developmental Biology 47, 563-571. Basu, A. (2018). DNA Damage, Mutagenesis and Cancer. International Journal of Molecular Sciences 19, 970. doi: 10.3390/ijms19040970. Colangeli, P., Schlägel, U.E., Obertegger, U., Petermann, J.S., Tiedemann, R., and Weithoff, G. (2019). Negative phototactic response to UVR in three cosmopolitan rotifers: a video analysis approach. Hydrobiologia 844, 43-54. doi: 10.1007/s10750-018-3801-y. Damulewicz, M., and Mazzotta, G.M. (2020). One Actor, Multiple Roles: The Performances of Cryptochrome in Drosophila. Frontiers in Physiology 11, 99. doi: 10.3389/fphys.2020.00099. Day, T.A., and Maule, A.G. (1999). Parasitic peptides! The structure and function of neuropeptides in parasitic worms. Peptides 20, 999-1019. doi: 10.1016/s0196-9781(99)00093-5. Edwards, S.L., Charlie, N.K., Milfort, M.C., Brown, B.S., Gravlin, C.N., Knecht, J.E., and Miller, K.G. (2008). A Novel Molecular Solution for Ultraviolet Light Detection in Caenorhabditis elegans. PLoS Biology 6, e198. doi: 10.1371/journal.pbio.0060198. Elliott, S.A., and Sánchez Alvarado, A. (2013). The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdisciplinary Reviews: Developmental Biology 2, 301-326. doi: 10.1002/wdev.82. Emery, P., So, W.V., Kaneko, M., Hall, J.C., and Rosbash, M. (1998). CRY, a Drosophila Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity. Cell 95, 669-679. doi: 10.1016/s0092-8674(00)81637-2. Gong, J., Yuan, Y., Ward, A., Kang, L., Zhang, B., Wu, Z., Peng, J., Feng, Z., Liu, J., and Xu, X.Z.S. (2016). The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell 167, 1252-1263.e1210. doi: 10.1016/j.cell.2016.10.053. Gustafsson, M.K.S., Halton, D.W., Kreshchenko, N.D., Movsessian, S.O., Raikova, O.I., Reuter, M., and Terenina, N.B. (2002). Neuropeptides in flatworms. Peptides 23, 2053-2061, Pii s0196-9781(02)00193-6. doi: 10.1016/s0196-9781(02)00193-6. Jékely, G. (2009). Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 2795-2808. doi: 10.1098/rstb.2009.0072. Jung, A., Domratcheva, T., Tarutina, M., Wu, Q., Ko, W.H., Shoeman, R.L., Gomelsky, M., Gardner, K.H., and Schlichting, L. (2005). Structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proceedings of the National Academy of Sciences of the United States of America 102, 12350-12355. doi: 10.1073/pnas.0500722102. Keeling, P.J., and Palmer, J.D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9, 605-618. doi: 10.1038/nrg2386. Kiyokazu Agata, Y.S., Kentaro Kato, Chiyoko Kobayashi, Yoshihiko Umesono, Kenji Watanabe (1998). Structure of the Planarian Central Nervous System (CNS) Revealed by Neuronal Cell Markers. Zoological Science 15, 433-440. doi: 10.2108/zsj.15.433 Laumer, C.E., and Giribet, G. (2014). Inclusive taxon sampling suggests a single, stepwise origin of ectolecithality in Platyhelminthes. Biological Journal of the Linnean Society 111, 570-588. doi: 10.1111/bij.12236. Liu, J., Ward, A., Gao, J., Dong, Y., Nishio, N., Inada, H., Kang, L., Yu, Y., Ma, D., Xu, T., et al. (2010). C. elegans phototransduction requires a G protein–dependent cGMP pathway and a taste receptor homolog. Nature Neuroscience 13, 715-722. doi: 10.1038/nn.2540. Malinowski, P.T., Cochet-Escartin, O., Kaj, K.J., Ronan, E., Groisman, A., Diamond, P.H., and Collins, E.M.S. (2017). Mechanics dictate where and how freshwater planarians fission. Proceedings of the National Academy of Sciences of the United States of America 114, 10888-10893. doi: 10.1073/pnas.1700762114. Nakazawa, M. (2003). Search for the Evolutionary Origin of a Brain: Planarian Brain Characterized by Microarray. Molecular Biology and Evolution 20, 784-791. doi: 10.1093/molbev/msg086. Nilsson, D.-E. (2009). The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 2833-2847. doi: 10.1098/rstb.2009.0083. Noreña, C., Damborenea, C., and Brusa, F. (2005). A taxonomic revision of South American species of the genus Stenostomum O. Schmidt (Platyhelminthes: Catenulida) based on morphological characters. Zoological Journal of the Linnean Society 144, 37-58. doi: 10.1111/j.1096-3642.2005.00157.x. Oliveri, P., Fortunato, A.E., Petrone, L., Ishikawa-Fujiwara, T., Kobayashi, Y., Todo, T., Antonova, O., Arboleda, E., Zantke, J., Tessmar-Raible, K., and Falciatore, A. (2014). The Cryptochrome/Photolyase Family in aquatic organisms. Marine Genomics 14, 23-37. doi: 10.1016/j.margen.2014.02.001. Parker, G.H., and Burnett, F.L. (1900). The reactions of planarians, with and without eyes, to light. American Journal of Physiology-Legacy Content 4, 373-385. Paskin, T.R., Jellies, J., Bacher, J., and Beane, W.S. (2014). Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength. PLoS ONE 9, e114708. doi: 10.1371/journal.pone.0114708. Pickard, G.E., and Sollars, P.J. (2011). Intrinsically Photosensitive Retinal Ganglion Cells. Reviews of Physiology, Biochemistry and Pharmacology, 59-90. doi: 10.1007/112_2011_4. Reuter, M., Gustafsson, M.K.S., Sheiman, I.M., Terenina, N., Halton, D.W., Maule, A.G., and Shaw, C. (1995). The nervous system of Tricladida. II. Neuroanatomy of Dugesia tigrina (Paludicola, Dugesiidae): An immunocytochemical study. Invertebrate Neuroscience 1, 133-143. doi: 10.1007/bf02331911. Reuter, M., Raikova, O.I., and Gustafsson, M.K.S. (2001). Patterns in the nervous and muscle systems in lower flatworms. Belgian Journal of Zoology 131, 47-53. Rivera, A.S., Ozturk, N., Fahey, B., Plachetzki, D.C., Degnan, B.M., Sancar, A., and Oakley, T.H. (2012). Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. Journal of Experimental Biology 215, 1278-1286. doi: 10.1242/jeb.067140. Rosa, M.T., Pereira, C.M., Ragagnin, G.T., and Loreto, E.L.S. (2015). STENOSTOMUM LEUCOPS DUGÈS, 1828 (PLATYHELMINTHES, CATENULIDA): A PUTATIVE SPECIES COMPLEX WITH PHENOTYPIC PLASTICITY. Papéis Avulsos de Zoologia (São Paulo) 55, 375-383. doi: 10.1590/0031-1049.2015.55.27. Rouhana, L., Weiss, J.A., Forsthoefel, D.J., Lee, H., King, R.S., Inoue, T., Shibata, N., Agata, K., and Newmark, P.A. (2013). RNA interference by feeding in vitro–synthesized double‐stranded RNA to planarians: Methodology and dynamics. Developmental Dynamics 242, 718-730. doi: 10.1002/dvdy.23950. Sakai, F., Agata, K., Orii, H., and Watanabe, K. (2000). Organization and Regeneration Ability of Spontaneous Supernumerary Eyes in Planarians —Eye Regeneration Field and Pathway Selection by Optic Nerves—. Zoological Science 17, 375-381. doi: 10.2108/jsz.17.375. Schuch, A.P., Moreno, N.C., Schuch, N.J., Martins Menck, C.F., and Machado Garcia, C.C. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology and Medicine 107, 110-124. doi: 10.1016/j.freeradbiomed.2017.01.029. Schwinn, K., Ferré, N., and Huix-Rotllant, M. (2020). UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein. Physical Chemistry Chemical Physics 22, 12447-12455. doi: 10.1039/d0cp01714k. Shettigar, N., Chakravarthy, A., Umashankar, S., Lakshmanan, V., Palakodeti, D., and Gulyani, A. (2021). Discovery of a body-wide photosensory array that matures in an adult-like animal and mediates eye–brain-independent movement and arousal. Proceedings of the National Academy of Sciences 118, e2021426118. doi: 10.1073/pnas.2021426118. Shettigar, N., Joshi, A., Dalmeida, R., Gopalkrishna, R., Chakravarthy, A., Patnaik, S., Mathew, M., Palakodeti, D., and Gulyani, A. (2017). Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm. Science Advances 3, e1603025. doi: 10.1126/sciadv.1603025. Taliaferro, W.H. (1920). Reactions to light in Planaria maculata, with special reference to the function and structure of the eyes. Journal of Experimental Zoology 31, 58-116. doi: 10.1002/jez.1400310103. Terakita, A. (2005). The opsins. Genome Biology 6, 213. 10.1186/gb-2005-6-3-213. Turner, J.R., Gold, A., Schnoll, R., and Blendy, J.A. (2013). Translational Research in Nicotine Dependence. Cold Spring Harbor Perspectives in Medicine 3, a012153-a012153. doi: 10.1101/cshperspect.a012153. Wang, J., Du, X.L., Pan, W.S., Wang, X.J., and Wu, W.J. (2015). Photoactivation of the cryptochrome/photolyase superfamily. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 22, 84-102. doi: 10.1016/j.jphotochemrev.2014.12.001. Ward, A., Liu, J., Feng, Z., and Xu, X.Z.S. (2008). Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nature Neuroscience 11, 916-922. doi: 10.1038/nn.2155. Wikgren, M.C., and Reuter, M. (1985). NEUROPEPTIDES IN A MICROTURBELLARIAN - WHOLE MOUNT IMMUNOCYTOCHEMISTRY. Peptides 6, 471-475. doi: 10.1016/0196-9781(85)90416-4. Wiltschko, R., Niessner, C., and Wiltschko, W. (2021). The Magnetic Compass of Birds: The Role of Cryptochrome. Frontiers in Physiology 12, 667000. doi: 10.3389/fphys.2021.667000. Xiang, Y., Yuan, Q., Vogt, N., Looger, L.L., Jan, L.Y., and Jan, Y.N. (2010). Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468, 921-926. doi: 10.1038/nature09576. Zoltowski, B.D., Vaccaro, B., and Crane, B.R. (2009). Mechanism-based tuning of a LOV domain photoreceptor. Nature Chemical Biology 5, 827-834. doi: 10.1038/nchembio.210.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86398-
dc.description.abstract狹口鏈渦蟲(Stenostomum grande)是一種非寄生性的扁形動物,棲息於淡水環境。其身體結構十分簡單,且身上無明顯色素,且不具眼點。在大部分的動物當中,有色素的眼點可以用來感測光的方向,因此可以猜測缺乏眼點的狹口鏈渦蟲應該不具有方向性視覺。更令人驚訝的是,在鏈渦蟲的轉錄體資料庫中,並沒有找到動物界最常用來作為感光蛋白的視蛋白(opsin)及隱花色素(cryptochrome),這代表鏈渦蟲可能甚至沒有感光能力。然而在鏈渦蟲的行為實驗中,我們發現鏈渦蟲具有負趨光的行為反應,且這個行為反應具有光波長的專一性。對於短波長的可見光(波長454 nm的藍光及514 nm的綠光),傾向往光線來向的相反方向進行移動來躲避,且該反應的方向明確,並非透過隨機移動的方式抵達暗處,對長波長的光(波長594 nm的黃光及629 nm的紅光)則沒有特別的反應,即使被高強度的紅光雷射(650 nm)照射,也不會進行迴避。由於鏈渦蟲缺乏動物界常見的感光蛋白,但卻可對特定波長的光線產生行為反應,因此未來對鏈渦蟲感光機制的研究,將可進一步探索動物界裡感光機制的多樣性及演化可塑性。zh_TW
dc.description.abstractStenostomum grande is a free-living freshwater flatworm that has simple anatomy. It lacks pigmentation and has no apparent eyespot. An eyespot with a pigment screen is instrumental for sensing the direction of light in many animal species. Therefore, one might predict that S. grande cannot sense the directionality of light. Furthermore, transcripts encoding opsin and cryptochrome, the commonly used photosensory molecules in the animal kingdom, are missing from the transcriptome of S. grande. This would suggest that S. grande may not even have the ability to sense the light. However, we discovered that S. grande could respond to light and exhibit a negative phototaxis through behavioral experiments. Furthermore, the phototactic response of S. grande is spectrum-sensitive. S. grande exhibited negative phototactic behavior toward blue and green light (wavelength: 454 nm and 514 nm), and these worms would move to the dark side directly. However, S. grande is irresponsive to orange and red light (wavelength: 594 nm and 629 nm), even if the worms are exposed to a red laser ray with high intensity (650 nm). Given that this flatworm lacks the conventional photosensory molecules and yet exhibits a defined phototactic response, it is of great interest to further characterize the novel photosensory mechanism in this flatworm. Future studies of Stenostomum may shed light on the diversity and evolutionary plasticity of photosensory mechanisms in the animal kingdom.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:53:29Z (GMT). No. of bitstreams: 1
U0001-1608202210433500.pdf: 3361932 bytes, checksum: 5fca05d8666e7800f0c2c9d78e22408c (MD5)
Previous issue date: 2022
en
dc.description.provenanceItem reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-25T07:27:19Z
Item was in collections:
生命科學系 (ID: da9df773-df1d-4d9d-8267-f280842b75e0)
No. of bitstreams: 1
U0001-1608202210433500.pdf: 3361932 bytes, checksum: 5fca05d8666e7800f0c2c9d78e22408c (MD5)
en
dc.description.tableofcontents摘要 i Abstract ii Content iv Introduction 1 Light and Vision 1 Photosensitive Molecules and Pigment Cells 2 The Negative Phototactic Responses in Planarians 4 The Phylogenetic Position, Morphology, and Behavior of S. grande 6 Material and Methods 9 Laboratory Culture of S. grande 9 The Light Sources (LED Strips) 9 The Light Sources (Laser Rays) 9 The Region Discrimination Assay and The Discrimination Index 10 The Directional Phototactic Response Assay 11 The Wavelength Choosing Assay 11 The Laser Irradiating Test 12 Identification of Specific Sequences 13 Results 14 The Negative Phototactic Response in S. grande 14 The Spectrum-Sensitive Phototactic Response 15 Wavelength Discrimination 16 S. grande Behave Differently with Various Wavelength of Laser Rays 18 Missing Homologs of Photoreceptors 19 Discussion 21 The Light-blocking Structure in S. grande 21 The Short-wavelength-sensitive Response 21 The Unknown Photosensitive Molecules in S. grande 22 Appendix A. The Nervous Anatomy of S. grande 25 Material and Methods 25 DNA cloning and plasmid preparation 25 The preparation of probes 25 Whole-mount in situ hybridization 26 Immunostaining 28 Microscope observation 29 Results 29 Discussion 30 Appendix B. Validation of Feeding dsRNA in S. grande 32 Material and Methods 32 Performing RNA interference by feeding dsRNA 32 Quantitative real time PCR 33 Results 33 Discussion 34 References 35 Tables and Figures 43 Video 72
dc.language.isoen
dc.title狹口鏈渦蟲的負趨光行為zh_TW
dc.titleThe Negative Phototactic Response in Stenostomum grandeen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳示國(Shih-Kuo Chen),朱家瑩(Chia-Ying Chu),周銘翊(Ming-Yi Chou)
dc.subject.keyword狹口鏈渦蟲,光趨性,行為,光波長專一性,zh_TW
dc.subject.keywordStenostomum,phototaxis,behavior,spectral sensitivity,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202202433
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-lift2022-09-02-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
U0001-1608202210433500.pdf3.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved