Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86380
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏佐榕(Tso-Jung Yen)
dc.contributor.authorChing-Ru Hoen
dc.contributor.author何青儒zh_TW
dc.date.accessioned2023-03-19T23:52:27Z-
dc.date.copyright2022-08-29
dc.date.issued2022
dc.date.submitted2022-08-22
dc.identifier.citation[1] Y. M. Asano, C. Rupprecht, and A. Vedaldi. Self-labelling via simultaneous clustering and representation learning. arXiv preprint arXiv:1911.05371, 2019. [2] P. Bielak, T. Kajdanowicz, and N. V. Chawla. Graph barlow twins: A self-supervised representation learning framework for graphs. arXiv preprint arXiv:2106.02466, 2021. [3] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H. P. Kriegel.Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56, 2005. [4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning ofvisual features. In Proceedings of the European conference on computer vision (ECCV), pages132–149, 2018. [5] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning ofvisual features by contrasting cluster assignments. Advances in Neural Information ProcessingSystems, 33:9912–9924, 2020. [6] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learningof visual representations. In International conference on machine learning, pages 1597–1607.PMLR, 2020.3. [7] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models arestrong semi-supervised learners. arXiv preprint arXiv:2006.10029, 2020. [8] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastivelearning. arXiv preprint arXiv:2003.04297, 2020. [9] X. Chen and K. He. Exploring simple siamese representation learning. In Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 15750–15758, June 2021. [10] M. Choi, W. Shin, Y. Lu, and S. Kim. Triangular contrastive learning on molecular graphs. arXivpreprint arXiv:2205.13279, 2022. [11] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structure activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry,34(2):786–797, 1991. [12] K. Ding, Z. Xu, H. Tong, and H. Liu. Data augmentation for deep graph learning: A survey.arXiv preprint arXiv:2202.08235, 2022. [13] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking graph neuralnetworks. arXiv preprint arXiv:2003.00982, 2020. [14] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for socialrecommendation. In The world wide web conference, pages 417–426, 2019. [15] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization38with graph convolutional neural networks. Advances in Neural Information Processing Systems,32, 2019. [16] J. B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch,B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent a new approachto self-supervised learning. Advances in Neural Information Processing Systems, 33:21271–21284, 2020. [17] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.Advances in neural information processing systems, 30, 2017. [18] K. Hassani and A. H. Khasahmadi. Contrastive multi-view representation learning on graphs.In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020. [19] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visualrepresentation learning. In Proceedings of the IEEE/CVF conference on computer vision andpattern recognition, pages 9729–9738, 2020. [20] Z. Hou, X. Liu, Y. Dong, C. Wang, J. Tang, et al. Graphmae: Self-supervised masked graphautoencoders. arXiv preprint arXiv:2205.10803, 2022. [21] J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha. Accurate classificationof protein structural families using coherent subgraph analysis. In Biocomputing 2004, pages411–422. World Scientific, 2003. [22] L. Jing and Y. Tian. Self-supervised visual feature learning with deep neural networks: A survey.IEEE transactions on pattern analysis and machine intelligence, 43(11):4037–4058, 2020.3. [23] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.arXiv preprint arXiv:1609.02907, 2016. [24] X. Ma, Z. Gao, Q. Hu, and M. AbdelHady. Hcl: Hybrid contrastive learning for graph-based recommendation. [25] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. Tudataset: Acollection of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663,2020. [26] N. Park, A. Kan, X. L. Dong, T. Zhao, and C. Faloutsos. Estimating node importance inknowledge graphs using graph neural networks. In Proceedings of the 25th ACM SIGKDDinternational conference on knowledge discovery & data mining, pages 596–606, 2019. [27] Y. Shen, J. Yan, C. W. Ju, J. Yi, Z. Lin, and H. Guan. Improving subgraph representation learningvia multi-view augmentation. arXiv preprint arXiv:2205.13038, 2022. [28] J. Shlomi, P. Battaglia, and J. R. Vlimant. Graph neural networks in particle physics. MachineLearning: Science and Technology, 2(2):021001, 2020. [29] J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R. MacNair,S. French, L. A. Carfrae, Z. Bloom-Ackermann, et al. A deep learning approach to antibioticdiscovery. Cell, 180(4):688–702, 2020. [30] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compoundretrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008. [31] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graphneural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24, 2020.4. [32] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric instance discrimination. In Proceedings of the IEEE conference on computer vision and patternrecognition, pages 3733–3742, 2018. [33] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXivpreprint arXiv:1810.00826, 2018. [34] Y. Yang, R. Miao, Y. Wang, and X. Wang. Contrastive graph convolutional networks with adaptive augmentation for text classification. Information Processing & Management, 59(4):102946,2022. [35] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24thACM SIGKDD international conference on knowledge discovery & data mining, pages 974–983, 2018. [36] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with augmentations. Advances in Neural Information Processing Systems, 33:5812–5823, 2020. [37] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow twins: Self-supervised learning viaredundancy reduction, 2021. [38] T. Zhao, G. Liu, S. Günnemann, and M. Jiang. Graph data augmentation for graph machinelearning: A survey. arXiv preprint arXiv:2202.08871, 2022. [39] Y. Zhu, Y. Xu, Q. Liu, and S. Wu. An empirical study of graph contrastive learning. arXivpreprint arXiv:2109.01116,2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86380-
dc.description.abstract隨著我們在機器學習領域的了解日趨深入,將大量已標記的樣本作為訓練對象的監督式學習正被廣泛地應用在各式各樣的情境與任務當中。然而,對於那些僅有部分樣本帶有標記的資料集,要如何在有限的時間和資源裡,讓電腦能從中學習相關的特徵並加以應用,便成為了一個值得研究的新問題。 「自監督學習」提供了可能的解決方案。和監督式學習不同的是,在自監督學習中,我們無需大量的事前作業,只需將少量已標記的樣本送入模型,模型即可從中自我學習、生成標記,進而達到、甚至超越監督學習下的結果。目前,自監督學習的研究與應用大多環繞著電腦視覺與自然語言處理,對於「圖」這種資料結構的了解仍處於起步的摸索階段。 在本篇論文中,我們將深入探討圖資料結構下的自監督學習模型,藉由實驗不同的方法與參數,對結果提出可能性的推測:包括使用較深的編碼器架構可以得到較佳的結果、在中小型資料集中提高隱藏維度對預測效果的提升有限、不同的資料擴增方式和模型在化學與生物資訊類別的資料集當中,會產生不同的效果等。zh_TW
dc.description.abstractSupervised learning is a popular model training method. However, its success relies on the use of huge amounts of labeled data. Recent advances in self-supervised learning have provided researchers with a means to train models on data in which only a few labeled observations are required. Self-supervised learning is efficient because it can perform model training without requiring a large amount of preprocessed data. State-of-the-art self-supervised models can achieve, even exceed, the performance of supervised models. Most studies on self-supervised learning have been conducted in the fields of computer vision and natural language processing. Meanwhile, self-supervised learning on graph data is still nascent. In this thesis, we explored self-supervised learning for training graph neural networks (GNNs). We conducted experiments by training GNN models on four molecular and bioinformatics datasets in different experimental settings. Furthermore, we provided possible explanations for the experiment results. We found that models with a deeper encoder structure can obtain superior results. However, increasing the hidden dimension size when a model is trained on small or medium-size datasets can only result in little improvement. By contrast, different data augmentation methods and different types of models can yield different results on molecular and bioinformatics datasets.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:52:27Z (GMT). No. of bitstreams: 1
U0001-0907202211095200.pdf: 2408599 bytes, checksum: f3f019956e5d3eb06f554523ba669c4b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i Acknowledgements iii 摘要 vii Abstract ix Contents xi List of Figures xiii List of Tables xv Chapter 1 Introduction 1 Chapter 2 Literature Reviews 5 2.1 Self-supervised Learning 5 2.2 Graph Neural Networks (GNN) 8 2.3 Discussion 11 Chapter 3 Methodology 13 3.1 Dataset 13 3.2 Data Augmentation 14 3.3 Experiment Factor 16 3.4 Contrastive Learning: SimCLR 16 3.5 Distillation Learning: Simsiam 18 3.6 Redundancy Reduction: Barlow Twins 20 3.7 Discussion 21 Chapter 4 Results and Discussion 23 4.1 Batch size’s effects on SimCLR are not apparent 24 4.2 Deeper encoders have better performance 26 4.3 Hidden dimension has little effect on model performance 26 4.4 SimCLR performs better in molecular datasets 28 4.5 SUBGRAPH augmentation performs closer in bioinformatics dataset 30 4.6 Discussion 34 Chapter 5 Conclusion 35 References 37 Appendix A — Experiment Result 43 A.1 Performance on MUTAG dataset 43 A.2 Performance on NCI1 dataset 44 A.3 Performance on PROTEIS dataset 44 A.4 Performance on DD dataset 45
dc.language.isoen
dc.subject自監督學習zh_TW
dc.subject圖神經網路zh_TW
dc.subject自監督編碼器zh_TW
dc.subjectgraph neural networken
dc.subjectencoder trainingen
dc.subjectself-supervised learningen
dc.title自監督學習於圖神經網路:實驗與分析zh_TW
dc.titleTraining Graph Neural Networks via Self-Supervised Learning: Experiments and Analysisen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-6513-6369
dc.contributor.coadvisor沈俊嚴(Chun-Yen Shen)
dc.contributor.oralexamcommittee杜憶萍(I-Ping Tu),黃冠華(Guan-Hua Huang),黃信誠(Hsin-Cheng Huang)
dc.subject.keyword自監督學習,自監督編碼器,圖神經網路,zh_TW
dc.subject.keywordself-supervised learning,graph neural network,encoder training,en
dc.relation.page47
dc.identifier.doi10.6342/NTU202201366
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
dc.date.embargo-lift2022-08-29-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-0907202211095200.pdf2.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved