Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86377
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳宗益(Chung-Yi Wu)
dc.contributor.authorYu-Hsuan Lihen
dc.contributor.author酈又瑄zh_TW
dc.date.accessioned2023-03-19T23:52:15Z-
dc.date.copyright2022-08-30
dc.date.issued2022
dc.date.submitted2022-08-24
dc.identifier.citation(1) Stanley, P.; Taniguchi, N.; Aebi, M. Chapter 9 N-Glycans, In Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., Seeberger, P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 2017; pp 99-111. (2) Weerapana, E.; Imperiali, B. Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 2006, 16, 91R-101R. (3) Breitling, J.; Aebi, M. N-Linked Protein Glycosylation in the Endoplasmic Reticulum. Cold Spring Harbor Perspectives in Biology 2013, 5, a013359. (4) Boscher, C.; Dennis, J. W.; Nabi, I. R. Glycosylation, galectins and cellular signaling. Current Opinion in Cell Biology 2011, 23, 383-392. (5) Bieberich, E. Chapter 3 Synthesis, Processing, and Function of N-glycans in N-glycoproteins, In Glycobiology of the Nervous System, Yu, R. K., Schengrund, C.-L., Eds.; Springer New York: New York, NY, 2014; pp 47-70. (6) Guo, H.; Abbott, K. L. Chapter Eight - Functional Impact of Tumor-Specific N-Linked Glycan Changes in Breast and Ovarian Cancers, In Advances in Cancer Research, Drake, R. R., Ball, L. E., Eds.; Academic Press: 2015; Vol. 126, pp 281-303. (7) Lauc, G.; Pezer, M.; Rudan, I.; Campbell, H. Mechanisms of disease: The human N-glycome. Biochim Biophys Acta Gen Subj 2016, 1860, 1574-1582. (8) Reis, C. A.; Magalhães, A. Glycosyltransferases and Gastric Cancer, In Glycosignals in Cancer: Mechanisms of Malignant Phenotypes, Furukawa, K., Fukuda, M., Eds.; Springer Japan: Tokyo, 2016; pp 17-32. (9) Varki, A. Biological roles of glycans. Glycobiology 2017, 27, 3-49. (10) Kornfeld, R.; Kornfeld, S. Assembly of Asparagine-Linked Oligosaccharides. Annu. Rev. Biochem. 1985, 54, 631-664. (11) Mrázek, H.; Weignerová, L.; Bojarová, P.; Novák, P.; Vaněk, O.; Bezouška, K. Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: Recent advances. Biotechnol. Adv. 2013, 31, 17-37. (12) Wang, L.-X.; Amin, Mohammed N. Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions. Chem. Biol. 2014, 21, 51-66. (13) Lih, Y.-H.; Shivatare, S. S.; Wu, C.-Y. Chapter 4 Chemical Synthesis of N-Glycans, In Synthetic Glycomes, Wang, P. G., Guan, W., Li, L., Eds.; The Royal Society of Chemistry: 2019; pp 83-104. (14) Unverzagt, C. Synthesis of a Biantennary Heptasaccharide by Regioselective Glycosylations. Angew. Chem. Int. Ed. Engl. 1994, 33, 1102-1104. (15) Unverzagt, C. A Modular System for the Synthesis of Complex N-Glycans. Angew. Chem. Int. Ed. Engl. 1997, 36, 1989-1992. (16) Unverzagt, C.; Gundel, G.; Eller, S.; Schuberth, R.; Seifert, J.; Weiss, H.; Niemietz, M.; Pischl, M.; Raps, C. Synthesis of Multiantennary Complex Type N-Glycans by Use of Modular Building Blocks. Chem. Eur. J. 2009, 15, 12292-12302. (17) Shivatare, S. S.; Chang, S.-H.; Tsai, T.-I.; Ren, C.-T.; Chuang, H.-Y.; Hsu, L.; Lin, C.-W.; Li, S.-T.; Wu, C.-Y.; Wong, C.-H. Efficient Convergent Synthesis of Bi-, Tri-, and Tetra-antennary Complex Type N-Glycans and Their HIV-1 Antigenicity. J. Am. Chem. Soc. 2013, 135, 15382-15391. (18) Shivatare, S. S.; Chang, S.-H.; Tsai, T.-I.; Tseng, S. Y.; Shivatare, V. S.; Lin, Y.-S.; Cheng, Y.-Y.; Ren, C.-T.; Lee, C.-C. D.; Pawar, S.; Tsai, C.-S.; Shih, H.-W.; Zeng, Y.-F.; Liang, C.-H.; Kwong, P. D.; Burton, D. R.; Wu, C.-Y.; Wong, C.-H. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies. Nat. Chem. 2016, 8, 338-346. (19) Li, L.; Liu, Y.; Ma, C.; Qu, J.; Calderon, A. D.; Wu, B.; Wei, N.; Wang, X.; Guo, Y.; Xiao, Z.; Song, J.; Sugiarto, G.; Li, Y.; Yu, H.; Chen, X.; Wang, P. G. Efficient chemoenzymatic synthesis of an N-glycan isomer library. Chem. Sci. 2015, 6, 5652-5661. (20) Wang, Z.; Chinoy, Z. S.; Ambre, S. G.; Peng, W.; McBride, R.; de Vries, R. P.; Glushka, J.; Paulson, J. C.; Boons, G.-J. A General Strategy for the Chemoenzymatic Synthesis of Asymmetrically Branched N-Glycans. Science 2013, 341, 379-383. (21) Li, T.; Huang, M.; Liu, L.; Wang, S.; Moremen, K. W.; Boons, G.-J. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans. Chem. Eur. J. 2016, 22, 18742-18746. (22) Dudkin, V. Y.; Miller, J. S.; Danishefsky, S. J. Chemical Synthesis of Normal and Transformed PSA Glycopeptides. J. Am. Chem. Soc. 2004, 126, 736-738. (23) Dudkin, V. Y.; Miller, J. S.; Dudkina, A. S.; Antczak, C.; Scheinberg, D. A.; Danishefsky, S. J. Toward a Prostate Specific Antigen-Based Prostate Cancer Diagnostic Assay: Preparation of Keyhole Limpet Hemocyanin -Conjugated Normal and Transformed Prostate Specific Antigen Fragments. J. Am. Chem. Soc. 2008, 130, 13598-13607. (24) Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G. Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555. (25) Gagarinov, I. A.; Li, T.; Toraño, J. S.; Caval, T.; Srivastava, A. D.; Kruijtzer, J. A. W.; Heck, A. J. R.; Boons, G.-J. Chemoenzymatic Approach for the Preparation of Asymmetric Bi-, Tri-, and Tetra-Antennary N-Glycans from a Common Precursor. J. Am. Chem. Soc. 2017, 139, 1011-1018. (26) Liu, L.; Prudden, A. R.; Capicciotti, C. J.; Bosman, G. P.; Yang, J.-Y.; Chapla, D. G.; Moremen, K. W.; Boons, G.-J. Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nat. Chem. 2019, 11, 161-169. (27) Wu, Z.; Liu, Y.; Ma, C.; Li, L.; Bai, J.; Byrd-Leotis, L.; Lasanajak, Y.; Guo, Y.; Wen, L.; Zhu, H.; Song, J.; Li, Y.; Steinhauer, D. A.; Smith, D. F.; Zhao, B.; Chen, X.; Guan, W.; Wang, P. G. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org. Biomol. Chem. 2016, 14, 11106-11116. (28) Calderon, A. D.; Zhou, J.; Guan, W.; Wu, Z.; Guo, Y.; Bai, J.; Li, Q.; Wang, P. G.; Fang, J.; Li, L. An enzymatic strategy to asymmetrically branched N-glycans. Org. Biomol. Chem. 2017, 15, 7258-7262. (29) Alagesan, K.; Kolarich, D. Improved strategy for large scale isolation of sialylglycopeptide (SGP) from egg yolk powder. MethodsX 2019, 6, 773-778. (30) Kizuka, Y.; Taniguchi, N. Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 2016, 6, 25. (31) Nagae, M.; Kizuka, Y.; Mihara, E.; Kitago, Y.; Hanashima, S.; Ito, Y.; Takagi, J.; Taniguchi, N.; Yamaguchi, Y. Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat. Commun. 2018, 9, 3380. (32) Hirata, T.; Nagae, M.; Osuka, R. F.; Mishra, S. K.; Yamada, M.; Kizuka, Y. Recognition of glycan and protein substrates by N-acetylglucosaminyltransferase-V. Biochim Biophys Acta Gen Subj 2020, 1864, 129726. (33) Nagae, M.; Yamaguchi, Y.; Taniguchi, N.; Kizuka, Y. 3D Structure and Function of Glycosyltransferases Involved in N-glycan Maturation. Int. J. Mol. Sci. 2020, 21, 437. (34) Hamilton, B. S.; Wilson, J. D.; Shumakovich, M. A.; Fisher, A. C.; Brooks, J. C.; Pontes, A.; Naran, R.; Heiss, C.; Gao, C.; Kardish, R.; Heimburg-Molinaro, J.; Azadi, P.; Cummings, R. D.; Merritt, J. H.; DeLisa, M. P. A library of chemically defined human N-glycans synthesized from microbial oligosaccharide precursors. Sci. Rep. 2017, 7, 15907. (35) Li, C.; Wang, L.-X. Chemoenzymatic Methods for the Synthesis of Glycoproteins. Chem. Rev. 2018, 118, 8359-8413. (36) Fairbanks, A. J. The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem. Soc. Rev. 2017, 46, 5128-5146. (37) Rich, J. R.; Withers, S. G. Emerging methods for the production of homogeneous human glycoproteins. Nat. Chem. Biol. 2009, 5, 206-215. (38) Umekawa, M.; Li, C.; Higashiyama, T.; Huang, W.; Ashida, H.; Yamamoto, K.; Wang, L.-X. Efficient Glycosynthase Mutant Derived from Mucor hiemalis Endo-β-N-acetylglucosaminidase Capable of Transferring Oligosaccharide from Both Sugar Oxazoline and Natural N-Glycan. J. Biol. Chem. 2010, 285, 511-521. (39) Umekawa, M.; Higashiyama, T.; Koga, Y.; Tanaka, T.; Noguchi, M.; Kobayashi, A.; Shoda, S.-i.; Huang, W.; Wang, L.-X.; Ashida, H.; Yamamoto, K. Efficient transfer of sialo-oligosaccharide onto proteins by combined use of a glycosynthase-like mutant of Mucor hiemalis endoglycosidase and synthetic sialo-complex-type sugar oxazoline. Biochim Biophys Acta Gen Subj 2010, 1800, 1203-1209. (40) Xu, Y.; Wu, Z.; Zhang, P.; Zhu, H.; Zhu, H.; Song, Q.; Wang, L.; Wang, F.; Wang, P. G.; Cheng, J. A novel enzymatic method for synthesis of glycopeptides carrying natural eukaryotic N-glycans. Chem. Commun. 2017, 53, 9075-9077. (41) Sakaguchi, K.; Katoh, T.; Yamamoto, K. Transglycosidase-like activity of Mucor hiemalis endoglycosidase mutants enabling the synthesis of glycoconjugates using a natural glycan donor. Biotechnol. Appl. Biochem. 2016, 63, 812-819. (42) Haneda, K.; Oishi, T.; Kimura, H.; Inazu, T. Development of a microbioreactor for glycoconjugate synthesis. Bioorg. Med. Chem. 2018, 26, 2092-2098. (43) Fairbanks, A. J. Synthetic and semi-synthetic approaches to unprotected N-glycan oxazolines. Beilstein J. Org. Chem. 2018, 14, 416-429. (44) Lim, D.; Fairbanks, A. J. Selective Transformations of the Anomeric Centre in Water Using DMC and Derivatives, In Coupling and Decoupling of Diverse Molecular Units in Glycosciences, Witczak, Z. J., Bielski, R., Eds.; Springer International Publishing: Cham, 2018; pp 109-131. (45) Noguchi, M.; Tanaka, T.; Gyakushi, H.; Kobayashi, A.; Shoda, S.-i. Efficient Synthesis of Sugar Oxazolines from Unprotected N-Acetyl-2-amino Sugars by Using Chloroformamidinium Reagent in Water. J. Org. Chem. 2009, 74, 2210-2212. (46) Chao, Q.; Ding, Y.; Chen, Z.-H.; Xiang, M.-H.; Wang, N.; Gao, X.-D. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front. Chem. 2020, 8, 513. (47) Chinoy, Z. S.; Friscourt, F.; Capicciotti, C. J.; Chiu, P.; Boons, G. J. Chemoenzymatic Synthesis of Asymmetrical Multi‐Antennary N‐Glycans to Dissect Glycan‐Mediated Interactions between Human Sperm and Oocytes. Chem. Eur. J. 2018, 24, 7970-7975. (48) Weiss, M.; Ott, D.; Karagiannis, T.; Weishaupt, M.; Niemietz, M.; Eller, S.; Lott, M.; Martínez-Orts, M.; Canales, Á.; Razi, N.; Paulson, J. C.; Unverzagt, C. Efficient Chemoenzymatic Synthesis of N-Glycans with a β1,4-Galactosylated Bisecting-GlcNAc Motif. Chembiochem 2020, 21, 3212-3215. (49) Srivastava, A. D.; Unione, L.; Bunyatov, M.; Gagarinov, I. A.; Delgado, S.; Abrescia, N. G. A.; Arda, A.; Boons, G.-J. Chemoenzymatic synthesis of complex N-glycans of the parasite S.mansoni to examine the importance of epitope presentation on DC-SIGN recognition. Angew. Chem. Int. Ed. 2021, 60, 19287-19296. (50) Toonstra, C.; Amin, M. N.; Wang, L.-X. Site-Selective Chemoenzymatic Glycosylation of an HIV-1 Polypeptide Antigen with Two Distinct N-Glycans via an Orthogonal Protecting Group Strategy. J. Org. Chem. 2016, 81, 6176-6185. (51) Zhang, X.; Ou, C.; Liu, H.; Prabhu, S. K.; Li, C.; Yang, Q.; Wang, L.-X. General and Robust Chemoenzymatic Method for Glycan-Mediated Site-Specific Labeling and Conjugation of Antibodies: Facile Synthesis of Homogeneous Antibody–Drug Conjugates. ACS Chem. Biol. 2021, 16, 2502-2514. (52) Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X. Highly efficient chemoenzymatic synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases. Chem. Commun. 2010, 46, 6066-6068. (53) Li, Y.; Xue, M.; Sheng, X.; Yu, H.; Zeng, J.; Thon, V.; Chen, Y.; Muthana, M. M.; Wang, P. G.; Chen, X. Donor substrate promiscuity of bacterial β1–3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1–4-galactosyltransferases. Bioorg. Med. Chem. 2016, 24, 1696-1705. (54) Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H. Effective Sugar Nucleotide Regeneration for the Large-Scale Enzymatic Synthesis of Globo H and SSEA4. J. Am. Chem. Soc. 2013, 135, 14831-14839. (55) Giordano, M.; Iadonisi, A. Tin-Mediated Regioselective Benzylation and Allylation of Polyols: Applicability of a Catalytic Approach Under Solvent-Free Conditions. J. Org. Chem. 2014, 79, 213-222. (56) Schmid, U.; Waldmann, H. Synthesis of Fucosyl Saccharides under Neutral Conditions in Solutions of Lithium Perchlorate in Dichloromethane. Chem. Eur. J. 1998, 4, 494-501. (57) Nicolaou, K. C.; Mitchell, H. J.; Rodríguez, R. M.; Fylaktakidou, K. C.; Suzuki, H.; Conley, S. R. Total Synthesis of Everninomicin 13,384-1—Part 3: Synthesis of the DE Fragment and Completion of the Total Synthesis. Chem. Eur. J. 2000, 6, 3149-3165. (58) Tsutsui, N.; Tanabe, G.; Ikeda, N.; Okamura, S.; Ogawa, M.; Miyazaki, K.; Kita, A.; Sugiura, R.; Muraoka, O. Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 4: Role of acyl side chains on D-mannose. Eur. J. Med. Chem. 2016, 121, 250-271. (59) Liu, Y.; Chan, Y. M.; Wu, J.; Chen, C.; Benesi, A.; Hu, J.; Wang, Y.; Chen, G. Chemical Synthesis of a Bisphosphorylated Mannose-6-Phosphate N-Glycan and its Facile Monoconjugation with Human Carbonic Anhydrase II for in vivo Fluorescence Imaging. Chembiochem 2011, 12, 685-690. (60) Yao, W.; Yan, J.; Chen, X.; Wang, F.; Cao, H. Chemoenzymatic synthesis of lacto-N-tetrasaccharide and sialyl lacto-N-tetrasaccharides. Carbohydr. Res. 2015, 401, 5-10. (61) Rasmussen, S. C. The nomenclature of fused-ring arenes and heterocycles: a guide to an increasingly important dialect of organic chemistry. ChemTexts 2016, 2, 16. (62) Lo, H.-J.; Krasnova, L.; Dey, S.; Cheng, T.; Liu, H.; Tsai, T.-I.; Wu, K. B.; Wu, C.-Y.; Wong, C.-H. Synthesis of Sialidase-Resistant Oligosaccharide and Antibody Glycoform Containing α2,6-Linked 3Fax-Neu5Ac. J. Am. Chem. Soc. 2019, 141, 6484-6488. (63) Noguchi, M.; Fujieda, T.; Huang, W. C.; Ishihara, M.; Kobayashi, A.; Shoda, S.-i. A Practical One-Step Synthesis of 1,2-Oxazoline Derivatives from Unprotected Sugars and Its Application to Chemoenzymatic β-N-Acetylglucosaminidation of Disialo-oligosaccharide. Helv. Chim. Acta 2012, 95, 1928-1936. (64) Wu, Z.; Liu, Y.; Li, L.; Wan, X.-F.; Zhu, H.; Guo, Y.; Wei, M.; Guan, W.; Wang, P. G. Decoding glycan protein interactions by a new class of asymmetric N-glycans. Org. Biomol. Chem. 2017, 15, 8946-8951. (65) Si, A.; Misra, A. K. Synthesis of a pentasaccharide repeating unit corresponding to the cell wall O-antigen of Escherichia coli O59 using iterative glycosylations in one pot. Tetrahedron 2016, 72, 4435-4441. (66) Manabe, Y.; Shomura, H.; Minamoto, N.; Nagasaki, M.; Takakura, Y.; Tanaka, K.; Silipo, A.; Molinaro, A.; Fukase, K. Convergent Synthesis of a Bisecting N-Acetylglucosamine (GlcNAc)-Containing N-Glycan. Chem. Asian J. 2018, 13, 1544-1551. (67) Yan, R.-B.; Yang, F.; Wu, Y.; Zhang, L.-H.; Ye, X.-S. An efficient and improved procedure for preparation of triflyl azide and application in catalytic diazotransfer reaction. Tetrahedron Lett. 2005, 46, 8993-8995. (68) Forman, A.; Pfoh, R.; Eddenden, A.; Howell, P. L.; Nitz, M. Synthesis of defined mono-de-N-acetylated β-(1→6)-N-acetyl-D-glucosamine oligosaccharides to characterize PgaB hydrolase activity. Org. Biomol. Chem. 2019, 17, 9456-9466. (69) Simell, B.; Auranen, K.; Käyhty, H.; Goldblatt, D.; Dagan, R.; O’Brien, K. L. The fundamental link between pneumococcal carriage and disease. Expert Rev. Vaccines 2012, 11, 841-855. (70) Hausdorff, W. P.; Bryant, J.; Paradiso, P. R.; Siber, G. R. Which Pneumococcal Serogroups Cause the Most Invasive Disease: Implications for Conjugate Vaccine Formulation and Use, Part I. Clin. Infect. Dis. 2000, 30, 100-121. (71) Bogaert, D.; de Groot, R.; Hermans, P. W. M. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 2004, 4, 144-154. (72) Hausdorff, W. P.; Hanage, W. P. Interim results of an ecological experiment — Conjugate vaccination against the pneumococcus and serotype replacement. Hum. Vaccin. Immunother. 2016, 12, 358-374. (73) Geno, K. A.; Gilbert, G. L.; Song, J. Y.; Skovsted, I. C.; Klugman, K. P.; Jones, C.; Konradsen, H. B.; Nahm, M. H. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin. Microbiol. Rev. 2015, 28, 871-899. (74) Li, Y.; Weinberger, D. M.; Thompson, C. M.; Trzciński, K.; Lipsitch, M. Surface Charge of Streptococcus pneumoniae Predicts Serotype Distribution. Infect. Immun. 2013, 81, 4519-4524. (75) Paton, J. C.; Trappetti, C. Streptococcus pneumoniae Capsular Polysaccharide. Microbiol. Spectr. 2019, 7, 7.2.33. (76) A. Nieto, P.; A. Riquelme, S.; A. Riedel, C.; M. Kalergis, A.; M. Bueno, S. Gene Elements that Regulate Streptococcus pneumoniae Virulence and Immunity Evasion. Curr. Gene Ther. 2013, 13, 51-64. (77) Grabenstein, J. D.; Musher, D. M. 47 - Pneumococcal Polysaccharide Vaccines, In Plotkin's Vaccines, 7th ed.; Plotkin, S. A., Orenstein, W. A., Offit, P. A., Edwards, K. M., Eds.; Elsevier: 2018; pp 816-840.e13. (78) Klugman, K. P.; Dagan, R.; Malley, R.; Whitney, C. G. 46 - Pneumococcal Conjugate Vaccine and Pneumococcal Common Protein Vaccines, In Plotkin's Vaccines, 7th ed.; Plotkin, S. A., Orenstein, W. A., Offit, P. A., Edwards, K. M., Eds.; Elsevier: 2018; pp 773-815.e18. (79) Whitney, C. G.; Farley, M. M.; Hadler, J.; Harrison, L. H.; Bennett, N. M.; Lynfield, R.; Reingold, A.; Cieslak, P. R.; Pilishvili, T.; Jackson, D.; Facklam, R. R.; Jorgensen, J. H.; Schuchat, A. Decline in Invasive Pneumococcal Disease after the Introduction of Protein–Polysaccharide Conjugate Vaccine. N. Engl. J. Med. 2003, 348, 1737-1746. (80) Gladstone, R. A.; Jefferies, J. M.; Faust, S. N.; Clarke, S. C. Pneumococcal 13-valent conjugate vaccine for the prevention of invasive pneumococcal disease in children and adults. Expert Rev. Vaccines 2012, 11, 889-902. (81) Väkeväinen, M.; Eklund, C.; Eskola, J.; Käyhty, H. Cross-Reactivity of Antibodies to Type 6B and 6A Polysaccharides of Streptococcus pneumoniae, Evoked by Pneumococcal Conjugate Vaccines, in Infants. J. Infect. Dis. 2001, 184, 789-793. (82) Andrews, N. J.; Waight, P. A.; Burbidge, P.; Pearce, E.; Roalfe, L.; Zancolli, M.; Slack, M.; Ladhani, S. N.; Miller, E.; Goldblatt, D. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect. Dis. 2014, 14, 839-846. (83) Weinberger, D. M.; Malley, R.; Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011, 378, 1962-1973. (84) Diamantino-Miranda, J.; Aguiar, S. I.; Carriço, J. A.; Melo-Cristino, J.; Ramirez, M. Clonal and serotype dynamics of serogroup 6 isolates causing invasive pneumococcal disease in Portugal: 1999-2012. PLoS One 2017, 12, e0170354. (85) Alexandrova, A. S.; Setchanova, L. P.; Pencheva, D. R.; Mitov, I. G. Phenotypic and genotypic characterization of serogroup 6 Streptococcus pneumoniae isolates collected during 10-valent pneumococcal conjugate vaccine era in Bulgaria. Acta Microbiol. Immunol. Hung. 2019, 67, 91-99. (86) van der Linden, M.; Winkel, N.; Küntzel, S.; Farkas, A.; Perniciaro, S. R.; Reinert, R. R.; Imöhl, M. Epidemiology of Streptococcus pneumoniae Serogroup 6 Isolates from IPD in Children and Adults in Germany. PLoS One 2013, 8, e60848. (87) Rebers, P. A.; Heidelberger, M. The Specific Polysaccharide of Type VI Pneumococcus. II. The Repeating Unit. J. Am. Chem. Soc. 1961, 83, 3056-3059. (88) Kenne, L.; Lindberg, B.; Madden, J. K. Structural studies of the capsular antigen from Streptococcus pneumoniae type 26. Carbohydr. Res. 1979, 73, 175-182. (89) Park, I. H.; Pritchard, D. G.; Cartee, R.; Brandao, A.; Brandileone, M. C. C.; Nahm, M. H. Discovery of a New Capsular Serotype (6C) within Serogroup 6 of Streptococcus pneumoniae. J. Clin. Microbiol. 2007, 45, 1225-1233. (90) Park, I. H.; Park, S.; Hollingshead, S. K.; Nahm, M. H. Genetic Basis for the New Pneumococcal Serotype, 6C. Infect. Immun. 2007, 75, 4482-4489. (91) Kuch, A.; Sadowy, E.; Skoczyńska, A.; Hryniewicz, W. First report of Streptococcus pneumoniae serotype 6D isolates from invasive infections. Vaccine 2010, 28, 6406-6407. (92) Robinson, D. A.; Briles, D. E.; Crain, M. J.; Hollingshead, S. K. Evolution and Virulence of Serogroup 6 Pneumococci on a Global Scale. J. Bacteriol. 2002, 184, 6367-6375. (93) Payne, D. B.; Gray, B. M. Streptococcus pneumoniae serogroup 6 clones over two decades. Epidemiol. Infect. 2014, 142, 2501-2513. (94) Bratcher, P. E.; Park, I. H.; Oliver, M. B.; Hortal, M.; Camilli, R.; Hollingshead, S. K.; Camou, T.; Nahm, M. H. Evolution of the capsular gene locus of Streptococcus pneumoniae serogroup 6. Microbiology 2011, 157, 189-198. (95) Gening, M. L.; Kurbatova, E. A.; Nifantiev, N. E. Synthetic Analogs of Streptococcus pneumoniae Capsular Polysaccharides and Immunogenic Activities of Glycoconjugates. Russ. J. Bioorg. Chem. 2021, 47, 1-25. (96) Slaghek, T. M.; van Oijen, A. H.; Maas, A. A. M.; Kamerling, J. P.; Vliegenthart, J. F. G. Synthesis of structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B. Carbohydr. Res. 1990, 207, 237-248. (97) Slaghek, T. M.; Mass, A. A. M.; Kamerling, J. P.; Vliegenthart, J. F. G. Synthesis of two phosphate-containing “heptasaccharide” fragments of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B. Carbohydr. Res. 1991, 211, 25-39. (98) Thijssen, M.-J. L.; Halkes, K. M.; Kamerling, J. P.; Vliegenthart, J. F. G. Synthesis of a spacer-containing tetrasaccharide representing a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 6B. Bioorg. Med. Chem. 1994, 2, 1309-1317. (99) Thijssen, M. J. L.; van Rijswijk, M. N.; Kamerling, J. P.; Vliegenthart, J. F. G. Synthesis of spacer-containing di- and tri-saccharides that represent parts of the capsular polysaccharide of Streptococcus pneumoniae type 6B. Carbohydr. Res. 1998, 306, 93-109. (100) Thijssen, M.-J. L.; Bijkerk, M. H. G.; Kamerling, J. P.; Vliegenthart, J. F. G. Synthesis of four spacer-containing `tetrasaccharides' that represent four possible repeating units of the capsular polysaccharide of Streptococcus pneumoniae type 6B. Carbohydr. Res. 1998, 306, 111-125. (101) Parameswar, A. R.; Pornsuriyasak, P.; Lubanowski, N. A.; Demchenko, A. V. Efficient stereoselective synthesis of oligosaccharides of Streptococcus pneumoniae serotypes 6A and 6B containing multiple 1,2-cis glycosidic linkages. Tetrahedron 2007, 63, 10083-10091. (102) Parameswar, A. R.; Hasty, S. J.; Demchenko, A. V. Synthesis of spacer-containing analogs of serogroup 6 pneumococcal oligosaccharides. Carbohydr. Res. 2008, 343, 1707-1717. (103) Chaudhury, A.; Mukherjee, M. M.; Ghosh, R. Synthetic avenues towards a tetrasaccharide related to Streptococcus pneumonia of serotype 6A. Beilstein J. Org. Chem. 2018, 14, 1095-1102. (104) Sukhova, E. V.; Yashunsky, D. V.; Kurbatova, E. A.; Tsvetkov, Y. E.; Nifantiev, N. E. Synthesis of a pseudotetrasaccharide corresponding to a repeating unit of the Streptococcus pneumoniae type 6B capsular polysaccharide. J. Carbohydr. Chem. 2018, 37, 1-17. (105) Jansen, W. T. M.; Hogenboom, S.; Thijssen, M. J. L.; Kamerling, J. P.; Vliegenthart, J. F. G.; Verhoef, J.; Snippe, H.; Verheul, A. F. M. Synthetic 6B Di-, Tri-, and Tetrasaccharide-Protein Conjugates Contain Pneumococcal Type 6A and 6B Common and 6B- Specific Epitopes That Elicit Protective Antibodies in Mice. Infect. Immun. 2001, 69, 787-793. (106) Parameswar, A. R.; Park, I. H.; Saksena, R.; Kováč, P.; Nahm, M. H.; Demchenko, A. V. Synthesis, Conjugation, and Immunological Evaluation of the Serogroup 6 Pneumococcal Oligosaccharides. Chembiochem 2009, 10, 2893-2899. (107) Geissner, A.; Pereira, C. L.; Leddermann, M.; Anish, C.; Seeberger, P. H. Deciphering Antigenic Determinants of Streptococcus pneumoniae Serotype 4 Capsular Polysaccharide using Synthetic Oligosaccharides. ACS Chem. Biol. 2016, 11, 335-344. (108) Lisboa, M. P.; Khan, N.; Martin, C.; Xu, F.-F.; Reppe, K.; Geissner, A.; Govindan, S.; Witzenrath, M.; Pereira, C. L.; Seeberger, P. H. Semisynthetic glycoconjugate vaccine candidate against Streptococcus pneumoniae serotype 5. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 11063-11068. (109) Ménová, P.; Sella, M.; Sellrie, K.; Pereira, C. L.; Seeberger, P. H. Identification of the Minimal Glycotope of Streptococcus pneumoniae 7F Capsular Polysaccharide using Synthetic Oligosaccharides. Chem. Eur. J. 2018, 24, 4181-4187. (110) Feng, S.; Xiong, C.; Wang, S.; Guo, Z.; Gu, G. Semisynthetic Glycoconjugate Vaccines To Elicit T Cell-Mediated Immune Responses and Protection against Streptococcus pneumoniae Serotype 3. ACS Infect. Dis. 2019, 5, 1423-1432. (111) Seco, B. M. S.; Xu, F.-F.; Grafmueller, A.; Kottari, N.; Pereira, C. L.; Seeberger, P. H. Sequential linkage of carbohydrate antigens to mimic capsular polysaccharides: Toward semisynthetic glycoconjugate vaccine candidates against Streptococcus pneumoniae serotype 14. ACS Chem. Biol. 2020, 15, 2395-2405. (112) Costantino, P.; Rappuoli, R.; Berti, F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin. Drug Discov. 2011, 6, 1045-1066. (113) Morelli, L.; Poletti, L.; Lay, L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. Eur. J. Org. Chem. 2011, 2011, 5723-5777. (114) Adamo, R.; Nilo, A.; Castagner, B.; Boutureira, O.; Berti, F.; Bernardes, G. J. L. Synthetically defined glycoprotein vaccines: current status and future directions. Chem. Sci. 2013, 4, 2995-3008. (115) Gening, M. L.; Kurbatova, E. A.; Tsvetkov, Y. E.; Nifantiev, N. E. Development of approaches to a third-generation carbohydrate-conjugate vaccine against Streptococcus pneumoniae: the search for optimal oligosaccharide ligands. Russ. Chem. Rev. 2015, 84, 1100-1113. (116) Stein, K. E. Thymus-Independent and Thymus-Dependent Responses to Polysaccharide Antigens. J. Infect. Dis. 1992, 165, S49-S52. (117) Mettu, R.; Lih, Y.-H.; Vulupala, H. R.; Chen, C.-Y.; Hsu, M.-H.; Lo, H.-J.; Liao, K.-S.; Cheng, Y.-Y.; Chiu, C.-H.; Wu, C.-Y. Synthetic Library of Oligosaccharides Derived from the Capsular Polysaccharide of Streptococcus pneumoniae Serotypes 6A and 6B and Their Immunological Studies. ACS Infect. Dis. 2022, 8, 626-634. (118) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. Programmable One-Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999, 121, 734-753. (119) Saikam, V.; Dara, S.; Yadav, M.; Singh, P. P.; Vishwakarma, R. A. Dimethyltin Dichloride Catalyzed Regioselective Alkylation of cis-1,2-Diols at Room Temperature. J. Org. Chem. 2015, 80, 11916-11925. (120) Mandal, S. S.; Liao, G.; Guo, Z. Chemical synthesis of the tumor-associated globo H antigen. RSC Adv. 2015, 5, 23311-23319. (121) Dhénin, S. G. Y.; Moreau, V.; Nevers, M.-C.; Créminon, C.; Djedani-Pilard, F. Sensitive and specific enzyme immunoassays for antigenic trisaccharide from Bacillus anthracis spores. Org. Biomol. Chem. 2009, 7, 5184-5199. (122) Masaki, M.; Kitahara, T.; Kurita, H.; Ohta, M. A new method for the removal of chloroacetyl groups. J. Am. Chem. Soc. 1968, 90, 4508-4509. (123) Bennis, K.; Calinaud, P.; Gelas, J.; Ghobsi, M. A new route to some enantiomerically pure substituted morpholines from D-ribono- and D-gulono-1,4-lactones. Carbohydr. Res. 1994, 264, 33-44. (124) Inman, J. K.; Highet, P. F.; Kolodny, N.; Robey, F. A. Synthesis of N.alpha.-(tert-butoxycarbonyl)-N.epsilon.-[N-(bromoacetyl)-.beta.-alanyl]-L-lysine: Its use in peptide synthesis for placing a bromoacetyl cross-linking function at any desired sequence position. Bioconjug. Chem. 1991, 2, 458-463. (125) Liao, H.-Y.; Hsu, C.-H.; Wang, S.-C.; Liang, C.-H.; Yen, H.-Y.; Su, C.-Y.; Chen, C.-H.; Jan, J.-T.; Ren, C.-T.; Chen, C.-H.; Cheng, T.-J. R.; Wu, C.-Y.; Wong, C.-H. Differential Receptor Binding Affinities of Influenza Hemagglutinins on Glycan Arrays. J. Am. Chem. Soc. 2010, 132, 14849-14856. (126) Campanero-Rhodes, M. A.; Lacoma, A.; Prat, C.; García, E.; Solís, D. Development and Evaluation of a Microarray Platform for Detection of Serum Antibodies Against Streptococcus pneumoniae Capsular Polysaccharides. Anal. Chem. 2020, 92, 7437-7443. (127) Martinez, J. E. R.; Thomas, B.; Flitsch, S. L. Glycan Array Technology, In Advances in Glycobiotechnology, Rapp, E., Reichl, U., Eds.; Springer International Publishing: Cham, 2021; pp 435-456. (128) Morelli, L.; Lay, L.; Santana-Mederos, D.; Valdes-Balbin, Y.; Verez Bencomo, V.; van Diepen, A.; Hokke, C. H.; Chiodo, F.; Compostella, F. Glycan Array Evaluation of Synthetic Epitopes between the Capsular Polysaccharides from Streptococcus pneumoniae 19F and 19A. ACS Chem. Biol. 2021, 16, 1671-1679. (129) Dwyer, M.; Gadjeva, M. Opsonophagocytic Assay, In The Complement System: Methods and Protocols, Gadjeva, M., Ed. Humana Press: Totowa, NJ, 2014; pp 373-379. (130) Pawar, S.; Hsu, L.; Reddy, T. N.; Ravinder, M.; Ren, C.-T.; Lin, Y.-W.; Cheng, Y.-Y.; Lin, T.-W.; Hsu, T.-L.; Wang, S.-K.; Wong, C.-H.; Wu, C.-Y. Synthesis of Asymmetric N-Glycans as Common Core Substrates for Structural Diversification through Selective Enzymatic Glycosylation. ACS Chem. Biol. 2020, 15, 2382-2394.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86377-
dc.description.abstract醣類廣泛存在於生物體中,並參與許多重要的生物過程,例如細胞黏附、癌症進程、宿主與病原的交互作用、抗體辨識等。本文第一部分,描述複雜N-聚醣六醣主架構的化學合成,此六醣經由收斂型方法合成,並具有不對稱的支鏈結構,其結構依酵素反應模型研究之結果設計,可應用於酵素催化之選擇性醣鏈結反應,以建構多種複雜N-聚醣,其中以葡萄糖胺上之一級胺基或醯胺可有效作為區別,此六醣可接合胺基連接子以利醣晶片製備,亦可與抗體接合以利抗體之醣修飾。本文第二部分,描述肺炎鏈球菌6A及6B血清型之莢膜多醣片段合成及疫苗研究,此莢膜多醣為磷基化類四醣重複單元,共十八個寡醣片段經由收斂型方法合成,其中選取八個連接攜帶蛋白並進行小鼠疫苗實驗並探討其免疫原性,四個磷基化類四醣成功誘發辨認醣類之抗體與調理殺菌之抗體,其中兩個具有橋接磷基的類四醣具有交互保護力,此篇結果提供合成型肺炎鏈球菌疫苗發展之可能性。zh_TW
dc.description.abstractOligosaccharides widely exist in organisms and are involved in many biological processes, such as cell-cell adhesion, cancer progression, host-pathogen interaction, and antibody recognition. In part I, chemical synthesis of the main hexasaccharide of complex type N-glycans was described. This hexasaccharide was installed asymmetric branching through protecting group engineering to enable selective enzymatic glycosylation for further diversification. A convergent synthetic pathway was performed with the chemical reactions tuned, and the effective constitution of the hexasaccharide was supported by several model studies of enzymatic reactions. Amine-amide differed glucosamine was found to be the valid differentiation for enzymatic elongation. Moreover, the hexasaccharide enables amino-linker coupling for immobilization and antibody coupling for glycan modification. In part II, chemical synthesis and immunological evaluation of capsular polysaccharide fragments of Streptococcus pneumoniae serotypes 6A and 6B were described. A library of eighteen oligosaccharides, derived from capsular repeating phosphorylated pseudo-tetrasaccharides, were built through systematic convergent synthesis. Eight of them were conjugated onto carrier protein and applied to mouse immunization for immunogenicity studies. Four pseudo-tetrasaccharides with phosphate elicited glycan-binding and opsonic antibodies, and the phosphate-bridged pseudo-tetrasaccharides exhibited cross-reactivity. The results provided potential development in synthetic pneumococcal conjugate vaccines.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:52:15Z (GMT). No. of bitstreams: 1
U0001-2308202219094900.pdf: 19661617 bytes, checksum: 31080ec029286ce17a7e3f665e60d4e5 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements i 摘要 ii Abstract iii Table of Contents iv List of Schemes vi List of Figures viii List of Tables x Abbreviations xi Part I. Synthesis of Asymmetrically Branched Core Hexasaccharide for Enzymatic Elongation of Complex Type N-Glycans 1 1.1 Introduction 1 1.1.1 N-Glycans 1 1.1.2 Chemical Synthesis of Complex Type N-Glycans 3 1.1.3 Glycosyltransferases Used in N-glycan Synthesis 4 1.1.4 Glycosynthase and Transglycosylation 5 1.1.5 Chemoenzymatic Synthesis of Complex Type N-Glycans 6 1.1.6 Core Hexasaccharide of Complex Type N-Glycans 7 1.1.7 Research Aims and Objectives 7 1.2 Results and Discussion 8 1.2.1 Retrosynthetic Analysis 8 1.2.2 Preparation of Glycosyltransferases and Glycosynthase 9 1.2.3 First Model Study on Mono-Acetylated Asymmetric Trisaccharide 11 1.2.4 Second Model Study on Tri-Acetylated Asymmetric Trisaccharide 15 1.2.5 Third Model Study on Asymmetric Amino Trisaccharide 17 1.2.6 Synthesis of Core Disaccharide 20 1.2.7 Model Study of Transglycosylation 23 1.2.8 First Approach to Asymmetrically Branched Hexasaccharide 26 1.2.9 Second Approach to Asymmetrically Branched Hexasaccharide 28 1.2.10 Transglycosylation of Chemically Synthesized Hexasaccharide 31 1.3 Conclusion 33 Part II. Synthesis and Immunological Evaluation of Capsular Polysaccharide Fragments of Streptococcus pneumoniae Serotypes 6A and 6B 35 2.1 Introduction 35 2.1.1 Streptococcus pneumoniae 35 2.1.2 Pneumococcal Capsular Polysaccharide 35 2.1.3 Pneumococcal Vaccines 36 2.1.4 Pneumococci Serotypes 6A and 6B 37 2.1.5 Pneumococci Serotypes 6C and 6D 38 2.1.6 Research Aims and Objectives 38 2.2 Results and Discussion 41 2.2.1 Synthesis of Fragmentary Capsular Polysaccharides 41 2.2.2 Carrier Protein Incorporation of Synthetic Oligosaccharides 54 2.2.3 Immunization Study on Mice 56 2.2.4 Serological Analysis in Glycan-Specific Antibody 57 2.2.5 Serological Analysis in Opsonophagocytic Activity 63 2.2.6 Extended Study of Synthetic Conjugate Vaccine Co-Formulation 67 2.3 Conclusion 72 References 75 Appendix 1. Materials and Methods for Part I 86 Appendix 2. Materials and Methods for Part II 112 Appendix 3. NMR Spectra of compounds in Part I 115
dc.language.isoen
dc.subject肺炎鏈球菌zh_TW
dc.subject化學合成zh_TW
dc.subjectN-聚醣zh_TW
dc.subject莢膜多醣zh_TW
dc.subject結合型肺炎鏈球菌疫苗zh_TW
dc.subject化學結合酵素合成zh_TW
dc.subjectchemoenzymatic synthesisen
dc.subjectpneumococcal conjugate vaccineen
dc.subjectcapsular polysaccharideen
dc.subjectStreptococcus pneumoniaeen
dc.subjectN-glycanen
dc.subjectchemical synthesisen
dc.title不對稱N-聚醣主架構之合成暨肺炎鏈球菌6A及6B血清型之疫苗研究zh_TW
dc.titleSynthesis of Asymmetric Main Skeleton of N-Glycans and Vaccine Study of S. pneumoniae Serotypes 6A and 6Ben
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.author-orcid0000-0003-3783-9945
dc.contributor.coadvisor王宗興(Tsung-Shing Wang),陳韻如(Yun-Ru Chen)
dc.contributor.oralexamcommittee邱政洵(Cheng-Hsun Chiu),吳世雄(Shih-Hsiung Wu),鄭偉杰(Wei-Chieh Cheng),王正中(Cheng-Chung Wang)
dc.subject.keywordN-聚醣,化學合成,化學結合酵素合成,肺炎鏈球菌,莢膜多醣,結合型肺炎鏈球菌疫苗,zh_TW
dc.subject.keywordN-glycan,chemical synthesis,chemoenzymatic synthesis,Streptococcus pneumoniae,capsular polysaccharide,pneumococcal conjugate vaccine,en
dc.relation.page240
dc.identifier.doi10.6342/NTU202202726
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2022-08-24-
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
U0001-2308202219094900.pdf19.2 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved