Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86361
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉力瑜(Li-Yu Liu)
dc.contributor.authorWhai-Ler Tengen
dc.contributor.author滕懷樂zh_TW
dc.date.accessioned2023-03-19T23:51:20Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-24
dc.identifier.citationArchontoulis, S. V., & Miguez, F. E. (2015). Nonlinear Regression Models and Applications in Agricultural Research. Agronomy Journal, 107(2), 786-798. https://doi.org/10.2134/agronj2012.0506 Breiman, L. (1996). Bagging Predictors. Mach Learn, 24, 123–140. https://doi.org/10.1007/BF00058655 Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees (1st ed.). Routledge.https://doi.org/10.1201/9781315139470 Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-theoretic Approach (2nd ed.). Springer. https://doi.org/10.1007/b97636 Catchpole, W. R., & Wheeler, C. J. (1992). Estimating Plant Biomass: A Review of Techniques. Australian Journal of Ecology, 17(2), 121-131. https://doi.org/10.1111/j.1442-9993.1992.tb00790.x Chang, J., Wang, Z., Li, Y., Han, G., & Wang, Z. W. (2010). Relationship between Aboveground Net Primary Productivity and Precipitation and Air Temperature of Three Plant Communities in Inner Mongolia Grassland. Acta Scientiarum Naturalium Universitatis NeiMongol, 41, 689-694. Chen, D., Shi, R., Pape, J. M., Neumann, K., Arend, D., Graner, A. and all (2018). Predicting Plant Biomass Accumulation from Image-derived Parameters. Gigascience, 7(2), 1–13. https://doi.org/10.1093/gigascience/giy001 Drost, D. T. (1997). Asparagus. In H. C. Wien & H. Stützel (Eds.), The Physiology of Vegetable Crops (2nd ed., pp. 457-478). CABI. Fahlgren, N., Feldman, M., Gehan, M. A., Wilson, M. S., Shyu, C., Bryant, D. W., Hill, S. T., McEntee, C. J., Warnasooriya, S. N., Kumar, I., Ficor, T., Turnipseed, S., Gilbert, K. B., Brutnell, T. P., Carrington, J. C., Mockler, T. C., & Baxter, I. (2015). A VersatilePhenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. Molecular Plant, 8(10), 1520-1535. https://doi.org/10.1016/j.molp.2015.06.005. Fu, Y., Yang, G., Wang, J., Song, X., & Feng, H. (2014). Winter Wheat Biomass Estimation based on Spectral Indices, Band Depth Analysis and Partial Least Squares Regression using Hyperspectral Measurements. Computers and Electronics in Agriculture, 100, 51-59. https://doi.org/10.1016/j.compag.2013.10.010 Gao, S., Niu, Z., Huang, N., & Hou, X. (2013). Estimating the Leaf Area Index, Height and Biomass of Maize using HJ-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 24, 1-8. https://doi.org/10.1016/j.jag.2013.02.002 Golzarian, M.R., Frick, R.A., Rajendran, K., Berger, B., Roy, S., Tester, M., & Lun, D. (2011). Accurate Inference of Shoot Biomass from High-throughput Images of Cereal Plants, Plant Methods, 7(2). https://doi.org/10.1186/1746-4811-7-2 Hong, M. (2018). Exploratory data mining with Classification and Regression Trees (CART): An introduction to CART. Psychological Science Agenda, 32(4). https://www.apa.org/science/about/psa/2018/04/classification-regression-trees Hung, L., & Chen, Y. W. (1996). Outstanding Cultivars of Asparagus for Taiwan. Acta Hortic, 415, 115-118. https://doi.org/10.17660/ActaHortic.1996.415.17 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R (2nd ed., pp. 288-292). Springer. Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. ASME. J. Basic Eng, 82(1), 35–45. https://doi.org/10.1115/1.3662552 Keith, H., Mackey, B. G., & Lindenmayer, D. B. (2009). Re-evaluation of Forest Biomass Carbon Stocks and Lessons from the World's most Carbon-dense Forests. Proceedings of the National Academy of Sciences, 106(28), 11635-11640. https://www.pnas.org/doi/10.1073/pnas.0901970106#tab-citations Koopman, S. J. (1997). Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models. Journal of the American Statistical Association, 92(440), 1630–1638. https://doi.org/10.2307/2965434 Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, Andrew., Scrucca, L., Tang, Y., Candan, C., & Hunt, T. (2022). caret: Classification and Regression Training. https://github.com/topepo/caret/ Lieth, J., Merritt, R.H., & Kohl, H.C. (1991). Crop Productivity of Petunia in Relation to Photosynthetically Active Radiation and Air Temperature. Journal of the American Society for Horticultural Science, 116, 623-626. McCarthy, M. C., & Enquist, B. J. (2007). Consistency between an Allometric Approach and Optimal Partitioning Theory in Global Patterns of Plant Biomass Allocation. Functional Ecology, 21(4), 713–720. http://www.jstor.org/stable/4540076 Mihai, H., & Florin, S. (2016). Biomass Prediction Model in Maize based on Satellite Images. AIP Conference Proceedings, 1738(1), 350009. https://doi.org/10.1063/1.4952132 Milborrow, S., (2022). rpart.plot: Plot 'rpart' Models: An Enhanced Version of 'plot.rpart'. http://www.milbo.org/rpart-plot/index.html Nagauri, M. R. (2020, December 1). Guide To Ensemble Methods: Bagging vs Boosting. Analytics India Magazine: Developers Corner. https://analyticsindiamag.com/guide-to-ensemble-methods-bagging-vs-boosting/ Neilson, E. H., Edwards, A. M., Blomstedt, C. K., Berger, B., Møller, B. L., & Gleadow, R. M. (2015). Utilization of a High-throughput Shoot Imaging System to Examine the Dynamic Phenotypic Responses of a C4 Cereal Crop Plant to Nitrogen and Water Deficiency over Time. Journal of Experimental Botany, 66(7), 1817-1832. https://doi.org/10.1093/jxb/eru526 Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The Structure, Distribution, and Biomass of the World's Forests. Annual Review of Ecology, Evolution, and Systematics, 44(1), 593-622. https://doi.org/10.1146/annurev-ecolsys-110512-135914 Therneau, T., Atkinson, B., & Ripley, B. (2022). rpart: Recursive Partitioning and Regression Trees. https://github.com/bethatkinson/rpart, https://cran.r-project.org/package=rpart. Pytlinski, J., & Krug, H. (1988, August). Modelling Pelargonium Zonale Response to Various Day and Night Temperatures. In H. Krug & H. P. Liebig (Eds.), International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation. (248, pp. 75-84). https://doi.org/10.17660/ActaHortic.1989.248.6 Wickham, H., François, R., Henry, L., & Müller, K. (2022). dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr. Wurr, D., Fellows, J., & Suckling, R. (1988). Crop continuity and prediction of maturity in the crisp lettuce variety Saladin. The Journal of Agricultural Science, 111(3), 481-486. https://doi.org/10.1017/S0021859600083672 陳駿季, & 楊智凱 (2017). 推動智慧農業-翻轉臺灣農業, 國土及公共治理季刊, 5(4), 104-111. 李健, 鍾瑞永, & 楊清富. (2016). 適應性卡爾曼濾波器於感測器訊號雜訊消除及錯誤偵測之應用. 臺南區農業改良場研究彙報, 67, 62-72. 林采萱 (2021). 多源數據結合作物模式應用於蘆筍智慧生產. 黄惠琳, & 陳水心 (2011). 百年農業點将錄 台灣蘆筍產業發展~專訪陳榮五場長 (一).農業知識入口網 行政院農業委員會 (2021). 農業統計資料查詢https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx 行政院農業委員會 (2021). 各項作物產量排序查詢https://agr.afa.gov.tw/afa/pgcropsigqty_cond.jsp 王仕賢, & 楊舒涵 (2019). 智慧農業計畫技術研發與推動效益, 國土及公共治理季刊, 7(3), 72-81.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86361-
dc.description.abstract蘆筍為多年生宿根作物,屬高經濟價值作物。除了應用留母莖栽培方法,採溫室栽培的蘆筍相較於傳統戶外種植的蘆筍,較不受自然環境的影響且可以維持穩定產量。透過物聯網系統與多源數據的結合,我們希望以統計迴歸模型來預測溫室内蘆筍的重量,並應用於智慧生產過程和產量評估。 在這項研究中,我們根據從傳感器或影像中獲得的數據,透過線性回歸和非線性回歸建立的模型來預測蘆筍嫩莖的鮮重。研究中發現,以氣溫、空氣相對濕度和太陽日射量等環境因素為自變數,統計模式不能很好地預測蘆筍的重量,判定係數均低於 0.3。如果使用蘆筍嫩莖影像面積作為自變數,則嫩莖重量的預測得到改進,判定係數為0.3531,高於使用統計模型。總而言之,我們希望將傳感器數據與多種統計方法相結合,可以了解這些遙感(例如物聯網設備)對於農業智能生產的貢獻和潛力,同時也呈現出該研究受到的限制以及一些建議有助於改善預測的模型。zh_TW
dc.description.abstractAsparagus is a perennial root crop, which has a high economic value. In addition to applying the cultivation method of leaving the mother stem, asparagus grown in the greenhouse is less affected by the natural environment and could maintain a stable yield compared with the traditional asparagus grown outdoors. Through the combination of Internet of Things (IoT) system and multi-source data, we hope to build models to predict the fresh weight of asparagus spear in Taiwan and applied it to smart production process and yield assessment. In this research, we used linear and non-linear regression models depending on data obtained from sensors or cameras to predict asparagus spear fresh weight. It was found that using environmental factors such as air temperature, air relative humidity and solar radiation as independent variables, the statistical models could not well predict the weights of spears with all R2 less than 0.3000. If using spear areas in the images as the independent variable, the prediction of the spear weights was improved (R2 = 0.3531). In conclusion, we hoped that combining the sensor data with multiple statistical methods, could give the readers a general and potential of these remote sensing contributed to smart production applied to agriculture, also showed some restrained during the research and some implications suggest.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:51:20Z (GMT). No. of bitstreams: 1
U0001-2308202210364500.pdf: 2327425 bytes, checksum: 9b02a894b740a352bdbb56e8cbc0acf9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝辭...............................................................................ii 摘要..............................................................................iii Abstract............................................................................v List of Figures...................................................................vii List of Tables...................................................................viii 1. Introduction........................................................................1 2. Materials and Methods.............................................................................5 2.1 Data for Calibration and Validation of the Growth Models........................6 2.2 Environmental Data..............................................................7 2.3 Construction of Spear Weight Prediction Models..................................9 3. Results............................................................................17 3.1 Treatment of Missing Data...............................................................................17 3.2 Linear Regression and Non-Linear Regression Models for Spear Weights...........21 4. Discussion......................................................................29 5. Conclusions.....................................................................32 References.........................................................................34 Appendix...........................................................................40
dc.language.isoen
dc.title應用影像及環境感測資料建立蘆筍嫩莖鮮重預測模型zh_TW
dc.titleUsing Image and Environmental Sensor Data to Construct Models for Asparagus Spear Fresh Weight Predictionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱春火(Chun-Huo Chiu),陳世芳(Shih-Fang Chen)
dc.subject.keyword蘆筍鮮重,線性回歸模型,非線性回歸模型,異速生長模型,zh_TW
dc.subject.keywordspear fresh weight,linear regression model,nonlinear regression model,allometric model,en
dc.relation.page46
dc.identifier.doi10.6342/NTU202202686
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2022-09-02-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-2308202210364500.pdf2.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved