請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86349完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪挺軒(Ting-Hsuan Hung) | |
| dc.contributor.author | Wei-Chun Gao | en |
| dc.contributor.author | 高唯峻 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:50:36Z | - |
| dc.date.copyright | 2022-08-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-24 | |
| dc.identifier.citation | 行政院農業委員會桃園區農業改良場 (2012)。 高品質聖誕紅盆花評鑑活動及評鑑規則。 洪挺軒、林長平 (2011)。 台灣農作物重要植物菌質體病害研究現況。 農作物及其媒介病害整合防治技術研討會專刊, 63-71。 陳韻帆 (2017)。 聖誕紅簇葉病病原之鑑定與應用. 國立臺灣大學植物病理與微生物學研究所碩士論文。 傅仰人、楊雅淨、陳錦木、羅士凱 (2010)。 聖誕紅栽培技術。桃園區農業技術專輯第 3 號,13-17。 傅仰人、楊雅淨、鄭隨和 (2009)。 聖誕紅之健康管理. 2009花卉健康管理研討會專刊,151-159。 黃耀徵 (2009)。 日日春葉片黃化病之病原植物菌質體與其媒介昆蟲之探討. 國立臺灣大學植物病理與微生物學研究所碩士論文. 劉名旂、楊雅淨、黃國棟 (2021)。 109 年聖誕紅產地觀摩紀實. 種苗科技專訊,113,21-23。 種苗改良繁殖場。 Agrios, G. N. (2005). Plant diseases caused by mollicutes: phytoplasmas and spiroplasmas. In Plant pathology (5th ed ed., pp. 687-703). Elsevier. Cao, Y., Trivellone, V., & Dietrich, C. H. (2020). A timetree for phytoplasmas (Mollicutes) with new insights on patterns of evolution and diversification. Molecular Phylogenetics and Evolution, 149, 106826. Chalak, L., Elbitar, A., Mourad, N., Mortada, C., & Choueiri, E. (2013). Elimination of grapevine Bois Noir Phytoplasma by tissue culture coupled or not with heat therapy or hot water treatment. Advances in Crop Science and Technology, 1(2), 107. Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions, 17(11), 1175-1184. Doi, Y., Teranaka, M., Yora, K., & Asuyama, H. (1967). Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Japanese Journal of Phytopathology, 33(4), 259-266. Dole, J., & Wilkins, H. (2005). Floriculture: Principles and species 2nd Ed Prentice Hall Upper Saddle River. In: NJ. Ecke, P. I., Faust, J. E., Higgins, A., & Williams, J. (2004). The ecke poinsettia manual. Ball publishing. Batavia, Illinois. USA. Gundersen, D., & Lee, I.-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia mediterranea, 144-151. IRPCM. (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1243-1255. Jarausch, W., Eyquard, J., Lansac, M., Mohns, M., & Dosba, F. (2000). Susceptibility and tolerance of new French Prunus domestica cultivars to European stone fruit yellows phytoplasmas. Journal of Phytopathology, 148(7-8), 489-493. Kaewmanee, C., & Hanboonsong, Y. (2011). Evaluation of the efficiency of various treatments used for sugarcane white leaf phytoplasma control. Bulletin of Insectology, 64(Supplement1), S197-S198. Kesumawati, E., Kimata, T., Uemachi, T., Hosokawa, M., & Yazawa, S. (2006). Correlation of phytoplasma concentration in Hydrangea macrophylla with green-flowering stability. Scientia horticulturae, 108(1), 74-78. Klemsdal, S., Bone, K., Brurberg, M., Floistad, E., Moe, R., & Blystad, D. (2004). The amount and distribution of poinsettia branch-inducing phytoplasma in poinsettia. XI International Symposium on Virus Diseases of Ornamental Plants 722, Kristoffersen, T. (1968). Influence of daylength and temperature on growth and development in poinsettia (Euphorbia pulcherrima Willd.). Symposium on Flower Regulation in Florist Crops 14, 79-90. Kunkel, L. (1926). Studies on aster yellows. American Journal of Botany, 646-705. Lee, I.-M., Klopmeyer, M., Bartoszyk, I. M., Gundersen-Rindal, D. E., Chou, T.-S., Thomson, K. L., & Eisenreich, R. (1997). Phytoplasma induced free-branching in commercial poinsettia cultivars. Nature Biotechnology, 15(2), 178-182. Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., & BARTOSZYK, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology, 48(4), 1153-1169. Lee, I.-M. (2000). Phytoplasma Casts a magic spell that turns the fair poinsettia into a christmas showpiece. Plant Health Progress, 1. Lee, S., Chu, C. Y., & Chu, C. C. (2021). Variability of phytoplasma infection density in poinsettia and evaluation of its association with the level of branching in host plants. Plant disease, 105(05), 1539-1545. Marzachí, C., & Bosco, D. (2005). Relative quantification of chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Molecular Biotechnology, 30(2), 117-127. Namba, S. (2019). Molecular and biological properties of phytoplasmas. Proceedings of the Japan Academy, Series B, 95(7), 401-418. Rao, G. P., Alvarez, E., & Yadav, A. (2018). Phytoplasmas: Plant Pathogenic Bacteria. Springer. Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., & Göschl, M. (1998). Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology, 3-26. Sinclair, W., Townsend, A., Griffiths, H., & Whitlow, T. (2000). Responses of six Eurasian Ulmus cultivars to a North American elm yellows phytoplasma. Plant disease, 84(12), 1266-1270. Stimart, D. P. (1983). Promotion and inhibition of branching in poinsettia in grafts between self-branching and nonbranching cultivars [Euphorbia pulcherrima]. Journal-American Society for Horticultural Science (USA). Stromme, E. (1994). The Scientific basis of poinsettia production. Agricultural University of Norway. Taylor, J. M., Lopez, R. G., Currey, C. J., & Janick, J. (2011). The poinsettia: History and transformation. Chronica Horticulturae, 51(3), 23-28. Wei, W., Lee, M., Davis, R. E., Suo, X., & Zhao, Y. (2008). Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. International Journal of Systematic and Evolutionary Microbiology, 58(10), 2368-2377. Zhao, Y., & Davis, R. E. (2016). Criteria for phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. International Journal of Systematic and Evolutionary Microbiology, 66(5), 2121-2123. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86349 | - |
| dc.description.abstract | 聖誕紅(Euphorbia pulcherrima)是大戟科 (Euphorbiaceae) 大戟屬 (Euphorbia)的多年生木本植物。聖誕紅的苞片因為色彩鮮豔而具有觀賞價值,是重要的花卉作物,台灣的年產量約120萬盆,產值約1.2億新台幣,僅次於蘭花。野生的聖誕紅分枝少、枝葉稀疏,且株高可達三公尺,是因為植物菌質體才使得聖誕紅矮化與分枝增加,株型圓潤緊湊而適合製成盆花。近期因聖誕紅種植期間出現突然抽高的現象,造成業者的經濟損失,而此現象的發生推測與植物菌質體有關。本研究蒐集市面較主流的聖誕紅品種,利用real-time PCR定量技術探討植物菌質體數量與聖誕紅分枝性狀的相關性,並追蹤在一般溫室栽培環境下自種植到出貨時期的植物菌質體濃度變化。同時,也利用生長箱,調查聖誕紅植株內植物菌質體在15 ℃、25 ℃、35 ℃等不同環境溫度下,是否會出現不同的消長狀況。本研究發現大多數品種的植物菌質體數量皆與分枝性狀的好壞呈現中高度的正相關,惟尚紅與玫瑰紅星因個體差異導致標準差過大,尚不易看出植物菌質體數量是否會影響該二品種的分枝數量。在自然感染的情況下,一般溫室栽培者,發現經過六個月的定量追蹤,僅在定植初期植物菌質體數量較低,隨著植株成長茁壯,植物菌質體也跟著增加,直到12月的開花期,植物菌質體數量出現顯著的提升,隨後在花期結束後,當苞片與葉片開始掉落,生長勢變的衰退,植物菌質體也跟著減少。於生長箱控溫環境栽培的品種為倍利及尚紅,在為期約半年的追蹤下,最終僅15 ℃處理的倍利於第三個月植物菌質體出現顯著的上升,其餘皆無顯著差異。35 ℃處理的兩個品種,從一開始植物菌質體數量就不斷降低,卻因為高溫對於植物本身造成太大的逆境,至實驗後第三個月時,植株數量已剩下不到一半,故統計上才不具顯著差異,而後續將植物移至溫室中恢復,植物菌質體也隨之增加,因此,雖然無法判定高溫是直接對植物菌質體造成傷害,還是因為植物逆境導致寄主植物狀況不佳,間接影響植物菌質體的生存,但仍可以確定高溫環境並不利於聖誕紅的種植,在商業栽培上應適時利用遮陰等方式改善環境溫度,避免將植株長時間暴露在過度炎熱的環境下。 | zh_TW |
| dc.description.abstract | Poinsettia (Euphorbia pulcherrima) is a perennial woody plant belonging to the family Euphorbiaceae and the genus Euphorbia. Being an important ornamental crop, poinsettia is valuable due to its colorful bracts. Total poinsettia production is about 1.2 million pots and values at 120 million NTD, ranking second only to orchids in Taiwan. Wild poinsettias are few in branches and sparse in leaves. Moreover, the plants can grow up to three meters tall. Phytoplasma is the key factor that induces poinsettia dwarf and free-branching. With these characters induced by phytoplasma, the plant appearance becomes more compact and suitable for pot flower. However, on these days, some of the poinsettia plants somehow start to grow excessively during the growing season and cause huge lost to producers. The reason of excessive growth is supposed to be leaded by phytoplasma. In this study, I collected some common cultivars and employed real-time PCR technology to study the relationship between the number of phytoplasma and poinsettia branching character. Moreover, I examined changes in the concentration of phytoplasma under normal atmospheric temperature in greenhouse. I also quantified the amount of phytoplasma with plants incubated in the growth chamber under 15 ℃, 25 ℃ and 35 ℃ to determine the patterns of growth and decline of phytoplasma. As result, the amounts of phytoplasma are positively correlated to the branching rate of most cultivars except Prima Red & Rose Star. The 2 cases might be due to huge variation from statistics. After six months of tracing, cultivars grown in the normal greenhouse exhibited lower phytoplasma in the beginning of investigation. Along with plant growth, phytoplasma increased as well. During flowering season on December, the amounts of phytoplasma raised. When it comes to the end of flowering season, phytoplasma declines followed by the decay of growth potential which bracts and leaves start to drop. The two cultivars growing in the growth chamber with controlled temperature are Pepride and Prima Red. Within the tracing of about half of a year, only Pepride shows a significant increase of phytoplasma in the third month while others remain no significant difference. The amounts of phytoplasma under 35 ℃ were actually declined continuously from the beginning. Because high temperature poses great threats to plants, less than half of the amounts of plants were sustained since the third month and, in hence, there is no statistically significant difference in the amount of phytoplasma. The plants under 35 ℃ treatment then moved to greenhouse for recovery and phytoplasma increases again. Thus, although we cannot ensure the high temperature either harms phytoplasma directly or indirectly poses effects on the survive of phytoplasma by causing growing threats to the plant hosts, we can still prove that it is not suitable to grow poinsettias under high temperature. For commercial growth, environmental temperature could be properly improved by shading or other methods to avoid plant being exposed under overheated environment. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:50:36Z (GMT). No. of bitstreams: 1 U0001-2108202222391800.pdf: 4739843 bytes, checksum: e8d3303414062cbb75bad0a7f030debc (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 口試委員審定書 i 致謝 ii 中文摘要 iii Abstract v 目錄 vii 圖表目錄 ix 壹、 前言 1 一、 聖誕紅簡介 1 二、 台灣聖誕紅的栽培管理 2 三、 研究目的 3 貳、 前人研究 5 一、 植物菌質體的發現與簡介 5 二、 植物菌質體在病理學上的特性 5 三、 植物菌質體的分類系統 6 四、 植物菌質體濃度與病徵嚴重度之相關性 7 五、 品種對於植物菌質體的影響 8 六、 溫度對於植物菌質體的影響 9 七、 聖誕紅簇葉病植物菌質體的real-time PCR定量技術與在植株內的分布 10 參、 材料與方法 12 一、 植株與植物菌質體來源 12 二、 植物總核酸萃取法 12 三、 Real-time PCR使用的引子對、探針,及反應條件 13 四、 建構real-time PCR標準曲線 14 五、 各品種分枝性狀調查 15 六、 Real-time PCR定量分析聖誕紅植物菌質體 15 肆、 結果 18 一、 Real-time PCR標準曲線 18 二、 各品種分枝性狀調查 18 三、 各品種植物菌質體數量初步測量 19 四、 溫室栽培環境下植物菌質體濃度變化 19 五、 生長箱控溫下植物菌質體濃度變化 20 伍、 討論 22 陸、 參考文獻 28 柒、 表 32 捌、 圖 35 玖、 附錄 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聖誕紅 | zh_TW |
| dc.subject | 分枝 | zh_TW |
| dc.subject | 即時聚合酵素連鎖反應 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 植物菌質體 | zh_TW |
| dc.subject | real-time PCR | en |
| dc.subject | Euphorbia pulcherrima | en |
| dc.subject | temperature | en |
| dc.subject | phytoplasma | en |
| dc.subject | poinsettia | en |
| dc.subject | branching | en |
| dc.title | 不同品種聖誕紅植株體內植物菌質體之定量追蹤及溫度對植物菌質體之影響 | zh_TW |
| dc.title | Quantitative Tracing of Phytoplasma in Different Poinsettia Cultivars and Influence of Temperature on Phytoplasma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林乃君(Nai-Chun LIN),呂依儒(Yi-Ju Lu),沈原民(Yuan-Min Shen) | |
| dc.subject.keyword | 聖誕紅,植物菌質體,分枝,即時聚合酵素連鎖反應,溫度, | zh_TW |
| dc.subject.keyword | Euphorbia pulcherrima,poinsettia,phytoplasma,branching,real-time PCR,temperature, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202202622 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| dc.date.embargo-lift | 2022-08-26 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2108202222391800.pdf | 4.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
