Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿廷zh_TW
dc.contributor.advisorYu-Ting Hsuen
dc.contributor.author施欣承zh_TW
dc.contributor.authorHsin-Cheng Shihen
dc.date.accessioned2023-03-19T23:50:28Z-
dc.date.available2023-12-26-
dc.date.copyright2022-09-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationBekhor, S, & Prashker, J. N. (2001). Stochastic User Equilibrium Formulation for Generalized Nested Logit Model. Transportation Research Record, 1752(01), 84–90.
Bekhor, Shlomo, Reznikova, L., & Toledo, T. (2007). Application of cross-nested logit route choice model in stochastic user equilibrium traffic assignment. Transportation Research Record, 2003, 41–49. https://doi.org/10.3141/2003-06
Ben-Akiva, M., & Boccara, B. (1995). Discrete choice models with latent choice sets. International Journal of Research in Marketing, 12(1), 9–24. https://doi.org/10.1016/0167-8116(95)00002-J
Bettman, J. R., Johnson, E. J., & Payne, J. W. (1991). Consumer decision making. In Handbook of consumer behaviour (pp. 50–84).
Brathwaite, T. (2016). PyLogit : Maximum Likelihood Estimation for Conditional “ Logit-type ” Models in Python Logit-type Models (pp. 1–14).
Briand, A. S., Côme, E., El Mahrsi, M. K., & Oukhellou, L. (2016). A mixture model clustering approach for temporal passenger pattern characterization in public transport. International Journal of Data Science and Analytics, 1(1), 37–50. https://doi.org/10.1007/s41060-015-0002-x
Cantillo, V., & Ortúzar, J. de D. (2005). A semi-compensatory discrete choice model with explicit attribute thresholds of perception. Transportation Research Part B: Methodological, 39(7), 641–657. https://doi.org/10.1016/j.trb.2004.08.002
Cascetta, E., & Papola, A. (2001). Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand. Transportation Research Part C: Emerging Technologies, 9(4), 249–263. https://doi.org/10.1016/S0968-090X(00)00036-X
Castro, M., Martínez, F., & Munizaga, M. A. (2013). Estimation of a constrained multinomial logit model. Transportation, 40(3), 563–581. https://doi.org/10.1007/s11116-012-9435-4
Cats, O. (2013). Multi-agent transit operations and assignment model. Procedia Computer Science, 19, 809–814. https://doi.org/10.1016/j.procs.2013.06.107
Cats, O., Koutsopoulos, H. N., Burghout, W., & Toledo, T. (2011). Effect of real-time transit information on dynamic path choice of passengers. Transportation Research Record, 2217, 46–54. https://doi.org/10.3141/2217-06
Cats, O., & West, J. (2020). Learning and Adaptation in Dynamic Transit Assignment Models for Congested Networks. Transportation Research Record, 2674(1), 113–124. https://doi.org/10.1177/0361198119900138
Cheon, S. H., Lee, C., & Shin, S. (2019). Data-driven stochastic transit assignment modeling using an automatic fare collection system. Transportation Research Part C: Emerging Technologies, 98(December 2018), 239–254. https://doi.org/10.1016/j.trc.2018.09.011
Chou, W.-R., Ko, C.-H., Lee, S.-W., Chen, Y., & Lee, T. (2018). A Study of Taipei Rapid Transit System Model (TRTS-4S). JOURNAL OF RAPID TRANSIT SYSTEMS AND TECHNOLOGY, 53, 1–45.
Chriqui, C., & Robillard, P. (1975). Common Bus Lines. Transportation Science, 9(2), 115–121. https://doi.org/10.1287/trsc.9.2.115
Codina, E., & Rosell, F. (2017). A heuristic method for a congested capacitated transit assignment model with strategies. Transportation Research Part B: Methodological, 106, 293–320. https://doi.org/10.1016/j.trb.2017.07.008
Craney, T. A., & Surles, J. G. (2002). Model-dependent variance inflation factor cutoff values. Quality Engineering, 14(3), 391–403. https://doi.org/10.1081/QEN-120001878
Crockett, C. E. (2002). A Process for Improving Transit Service Connectivity. In Massachusetts Institute of Technology.
de Grange, L., Raveau, S., & González, F. (2012). A Fixed Point Route Choice Model for Transit Networks that Addresses Route Correlation. Procedia - Social and Behavioral Sciences, 54, 1197–1204. https://doi.org/10.1016/j.sbspro.2012.09.834
Dial, R. B. (1967). Transit Pathfinder Algorithm. Highway Research Record, 67–85.
Dunn, K. (2014). Process Improvement Using Data (Issue May).
Einhorn, H. J., & Hogarth, R. M. (1981). Behavioral decision theory: Processes of judgement and choice. Annual Review of Psychology, 32(1), 53–88.
El Mahrsi, M. K., Come, E., Oukhellou, L., & Verleysen, M. (2017). Clustering Smart Card Data for Urban Mobility Analysis. IEEE Transactions on Intelligent Transportation Systems, 18(3), 712–728. https://doi.org/10.1109/TITS.2016.2600515
Eluru, N., Chakour, V., & El-Geneidy, A. M. (2012). Travel mode choice and transit route choice behavior in Montreal: Insights from McGill University members commute patterns. Public Transport, 4(2), 129–149. https://doi.org/10.1007/s12469-012-0056-2
Faroqi, H., Mesbah, M., & Kim, J. (2017). Spatial-temporal similarity correlation between public transit passengers using smart card data. Journal of Advanced Transportation, 2017. https://doi.org/10.1155/2017/1318945
Florian, M., & Constantin, I. (2012). A note on logit choices in strategy transit assignment. EURO Journal on Transportation and Logistics, 1(1–2), 29–46. https://doi.org/10.1007/s13676-012-0007-8
Fosgerau, M., Frejinger, E., & Karlstrom, A. (2013). A link based network route choice model with unrestricted choice set. Transportation Research Part B: Methodological, 56, 70–80. https://doi.org/10.1016/j.trb.2013.07.012
Fu-Wha Han, A. (1987). Assessment of Transfer Penalty to Bus Riders in Taipei: A Disaggregate Demand Modeling Approach. Transportation Research Recordesearch Record, 1139(8), 8–14.
Fu, Q., Liu, R., & Hess, S. (2012). A Review on Transit Assignment Modelling Approaches to Congested Networks: A New Perspective. Procedia - Social and Behavioral Sciences, 54(0), 1145–1155. https://doi.org/10.1016/j.sbspro.2012.09.829
GUIDE. (2000). European Commission, the Fourth Framework Research and Technological Development Programme.
Guo, Z., & Wilson, N. H. M. (2007). Modeling effects of transit system transfers on travel behavior: Case of commuter rail and subway in downtown Boston, Massachusetts. Transportation Research Record, 2006, 11–20. https://doi.org/10.3141/2006-02
Guo, Z., & Wilson, N. H. M. (2011). Assessing the cost of transfer inconvenience in public transport systems: A case study of the London Underground. Transportation Research Part A: Policy and Practice, 45(2), 91–104. https://doi.org/10.1016/j.tra.2010.11.002
Hamdouch, Y., & Lawphongpanich, S. (2008). Schedule-based transit assignment model with travel strategies and capacity constraints. Transportation Research Part B: Methodological, 42(7–8), 663–684. https://doi.org/10.1016/j.trb.2007.11.005
Huber, J., & Klein, N. M. (1991). Adapting Cutoffs to the Choice Environment: The Effects of Attribute Correlation and Reliability. Journal of Consumer Research, 18(3), 346. https://doi.org/10.1086/209264
Hunt, J. D. (1990). A Logit Model of Public Transport Route Choice. ITE Journal, December(December), 26–30.
Iseki, H., & Taylor, B. D. (2009). Not all transfers are created equal: Towards a framework relating transfer connectivity to travel behaviour. Transport Reviews, 29(6), 777–800. https://doi.org/10.1080/01441640902811304
Jánošíkova, L., Slavík, J., & Koháni, M. (2014). Estimation of a route choice model for urban public transport using smart card data. Transportation Planning and Technology, 37(7), 638–648. https://doi.org/10.1080/03081060.2014.935570
Jiang, Y., & Ceder, A. (Avi). (2021). Incorporating personalization and bounded rationality into stochastic transit assignment model. Transportation Research Part C: Emerging Technologies, 127(March), 103127. https://doi.org/10.1016/j.trc.2021.103127
Kato, H. (2016). Challenges in Better Co-ordinating Tokyo’s Urban Rail Services. www.itf-oecd.org
Kato, H., Itoh, M., Devision, P., Kato, S., Ishida, H., & Sciences, P. (2003). Cost- Benefit Analysis For Improvement Of Transfer at Urban Rail Stations. World Transport Research: Selected Proceedings of the 9th World Conference on Transport Research., 19.
Kieu, L. M., Bhaskar, A., & Chung, E. (2015). Passenger segmentation using smart card data. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1537–1548. https://doi.org/10.1109/TITS.2014.2368998
Kieu, L. M., Ou, Y., & Cai, C. (2018). Large-scale transit market segmentation with spatial-behavioural features. Transportation Research Part C: Emerging Technologies, 90(August 2017), 97–113. https://doi.org/10.1016/j.trc.2018.03.003
Kim, K. M., Hong, S. P., Ko, S. J., & Kim, D. (2015). Does crowding affect the path choice of metro passengers? Transportation Research Part A: Policy and Practice, 77, 292–304. https://doi.org/10.1016/j.tra.2015.04.023
Klein, N. M., & Bither, S. W. (1987). Cutoff Selection. 14(September), 240–257.
Kurauchi, F., Bell, M. G. H., & Schmöcker, J. D. (2003). Capacity Constrained Transit Assignment with Common Lines. Journal of Mathematical Modelling and Algorithms, 2(4), 309–327. https://doi.org/10.1023/B:JMMA.0000020426.22501.c1
Lai, X., & Bierlaire, M. (2015). Specification of the cross-nested logit model with sampling of alternatives for route choice models. Transportation Research Part B: Methodological, 80, 220–234. https://doi.org/10.1016/j.trb.2015.07.005
Lai, X., & Li, J. (2015). Modelling stochastic route choice behaviours with a closed-form mixed logit model. Mathematical Problems in Engineering, 2015(2). https://doi.org/10.1155/2015/729089
Lam, W. H. K., Gao, Z. Y., Chan, K. S., & Yang, H. (1999). A stochastic user equilibrium assignment model for congested transit networks. Transportation Research Part B: Methodological, 33(5), 351–368. https://doi.org/10.1016/S0191-2615(98)00040-X
Larrain, H., Suman, H. K., & Muñoz, J. C. (2021). Route based equilibrium assignment in congested transit networks. Transportation Research Part C: Emerging Technologies, 127(December 2020). https://doi.org/10.1016/j.trc.2021.103125
Liu, R., & Pendyala, R. M. (1991). Assessment of Intermodal Transfer Penalties. Transportation Research Record, 1607(1), 74–80.
Liu, Y., Bunker, J., & Ferreira, L. (2010). Transit userś route-choice modelling in transit assignment: A review. Transport Reviews, 30(6), 753–769. https://doi.org/10.1080/01441641003744261
Lo, H. K., Yip, C. W., & Wan, Q. K. (2004). Modeling competitive multi-modal transit services: A nested logit approach. Transportation Research Part C: Emerging Technologies, 12(3–4), 251–272. https://doi.org/10.1016/j.trc.2004.07.011
Ma, X., Wu, Y. J., Wang, Y., Chen, F., & Liu, J. (2013). Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36, 1–12. https://doi.org/10.1016/j.trc.2013.07.010
Mahmassani, H. S. (1997). Dynamics of commuter behaviour: Recent research and continuing challenges. In Understanding Travel Behaviour in an Era of Change.
Mahrsi, M. K. El, Côme, E., Baro, J., & Oukhellou, L. (2014). Understanding Passenger Patterns in Public Transit Through Smart Card and Socioeconomic Data. The 3rd International Workshop on Urban Computing (UrbComp 2014).
Manski, C. F. (1977). The structure of random utility models. Theory and Decision, 8(3), 229.
Mao, M. N., Ni, Y. C., & Hsu, Y. T. (2021). Investigating Passengers ’ Perspectives on Transfer Station Design of Urban Railway Systems : A Case Study in Taipei Metro. Transportation Research Board 100th Annual Meeting.
Martínez, F., Aguila, F., & Hurtubia, R. (2009). The constrained multinomial logit: A semi-compensatory choice model. Transportation Research Part B: Methodological, 43(3), 365–377. https://doi.org/10.1016/j.trb.2008.06.006
Mintz, A., Geva, N., & Derouen, K. (1994). Mathematical models of foreign policy decision-making: Compensatory vs. noncompensatory. Synthese, 100(3), 441–460.
Næs, T., & Mevik, B. H. (2001). Understanding the collinearity problem in regression and discriminant analysis. Journal of Chemometrics, 15(4), 413–426. https://doi.org/10.1002/cem.676
Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice-Hall.
Nguyen, S., & Pallottino, S. (1988). Theory and Methodology Equilibrium traffic assignment for large scale transit networks. European Journal of Operational Research, 37, 176–186.
Nguyen, Sang, Pallottino, S., & Malucelli, F. (2001). A modeling framework for passenger assignment on a transport network with timetables. Transportation Science, 35(3), 238–249. https://doi.org/10.1287/trsc.35.3.238.10152
Nuzzolo, A., Crisalli, U., Comi, A., & Rosati, L. (2016). A mesoscopic transit assignment model including real-time predictive information on crowding. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 20(4), 316–333. https://doi.org/10.1080/15472450.2016.1164047
NYMTC. (2000). Regional Travel - Household Interview Survey (Issue February).
Olshavsky, R. W. (1979). Task complexity and contingent processing in decision making: A replication and extension. Organizational Behavior and Human Performance, 24(3), 300–316. https://doi.org/10.1016/0030-5073(79)90032-1
Paulsen, M., Rasmussen, T. K., & Nielsen, O. A. (2021). Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model. Transportation Research Part A: Policy and Practice, 148(May 2020), 155–182. https://doi.org/10.1016/j.tra.2021.03.011
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge university press.
Payne, J.W., Johnson, E. J., & Bettman, J. R. (1988). Adaptive Strategy Selection in Decision Making. Journal of Experimental Psychology-Learning Memory and Cognition, 14(3), 534–552. http://psycnet.apa.org/index.cfm?fa=fulltext.journal&jcode=xlm&vol=14&issue=3&format=html&page=534&expand=1
Payne, John W. (1976). Task complexity and contingent processing in decision making: An information search and protocol analysis. Organizational Behavior and Human Performance, 16(2), 366–387. https://doi.org/10.1016/0030-5073(76)90022-2
Poon, M. H., Wong, S. C., & Tong, C. O. (2004). A dynamic schedule-based model for congested transit networks. Transportation Research Part B: Methodological, 38(4), 343–368. https://doi.org/10.1016/S0191-2615(03)00026-2
Prato, C. G. (2009). Route choice modeling: Past, present and future research directions. Journal of Choice Modelling, 2(1), 65–100. https://doi.org/10.1016/S1755-5345(13)70005-8
Prato, C. G., & Bekhor, S. (2007). Modeling route choice behavior: How relevant is the composition of choice set? Transportation Research Record, 2003, 64–73. https://doi.org/10.3141/2003-09
Schmöcker, J. D., Bell, M. G. H., & Kurauchi, F. (2008). A quasi-dynamic capacity constrained frequency-based transit assignment model. Transportation Research Part B: Methodological, 42(10), 925–945. https://doi.org/10.1016/j.trb.2008.02.001
Sethuraman, R., Cole, C., & Jain, D. (1994). Analyzing the Effect of Information Format and Task on Cutoff Search Strategies. Journal of Consumer Psychology, 3(2), 103–136. https://doi.org/10.1207/s15327663jcp0302_01
Si, B., Zhong, M., Yang, X., & Gao, Z. (2011). Urban transit assignment model based on augmented network with in-vehicle congestion and transfer congestion. Journal of Systems Science and Systems Engineering, 20(2), 155–172. https://doi.org/10.1007/s11518-011-5159-9
Slovic, P., & MacPhillamy, D. (1974). Dimensional commensurability and cue utilization in comparative judgment. Organizational Behavior and Human Performance, 11(2), 172–194. https://doi.org/10.1016/0030-5073(74)90013-0
Swait, J. (2001). A non-compensatory choice model incorporating attribute cutoffs. Transportation Research Part B: Methodological, 35(10), 903–928. https://doi.org/10.1016/S0191-2615(00)00030-8
Swait, J., & Ben-akiva, M. (1987). Incorporating Random Constraints in Discrete. Transportation Research Part B: Methodological, 21(2), 91–102.
Szeto, W. Y., & Jiang, Y. (2014). Transit assignment: Approach-based formulation, extragradient method, and paradox. Transportation Research Part B: Methodological, 62, 51–76. https://doi.org/10.1016/j.trb.2014.01.010
Szeto, W. Y., Solayappan, M., & Jiang, Y. (2011). Reliability-based transit assignment for congested stochastic transit networks. Computer-Aided Civil and Infrastructure Engineering, 26(4), 311–326. https://doi.org/10.1111/j.1467-8667.2010.00680.x
Tavassoli, A., Mesbah, M., & Hickman, M. (2020). Calibrating a transit assignment model using smart card data in a large-scale multi-modal transit network. Transportation, 47(5), 2133–2156. https://doi.org/10.1007/s11116-019-10004-y
TfL. (2001). LONDON AREA TRANSPORT SURVEY.
Tong, C. O., & Wong, S. C. (1999). Schedule-based time-dependent trip assignment model for transit networks. Journal of Advanced Transportation, 33(3), 371–388. https://doi.org/10.1002/atr.5670330307
TRTC. (2022). Ridership Statistics Per Station April, 2022. Taipei Rapid Transit Company, TRTC.
Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4), 281–299. https://doi.org/10.1037/h0032955
Vovsha, P., & Bekhor, S. (1998). Link-Nested Logit Model of Route Choice. Transportation Research Record: Journal of the Transportation Research Board, 1645, 133–142.
Wardman, M., & Hine, J. (2000). Costs of Interchange: A Review of the Literature. https://doi.org/10.1016/S1366-5545(02)00012-1
Wardman, M., Hine, J., & Stradling, S. (2001). Interchange and Travel Choice Volume 1. In Edinburgh: Scottish Executive Central Research Unit (Vol. 1).
Xu, X., Xie, L., Li, H., & Qin, L. (2018). Learning the route choice behavior of subway passengers from AFC data. Expert Systems with Applications, 95, 324–332. https://doi.org/10.1016/j.eswa.2017.11.043
Xue, J., Si, B., Cui, H., & Zhu, S. (2021). Research on Hierarchical Clustering Method of Urban Rail Transit Passengers Based on Individual Portrait. Journal of Physics: Conference Series, 1883(1). https://doi.org/10.1088/1742-6596/1883/1/012039
Zhang, Y., Yao, E., Wei, H., & Zheng, K. (2017). A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application. PLoS ONE, 12(6), 1–19. https://doi.org/10.1371/journal.pone.0178789
Zhu, W., Hu, H., & Huang, Z. (2014). Calibrating Rail Transit Assignment Models with Genetic Algorithm and Automated Fare Collection Data. Computer-Aided Civil and Infrastructure Engineering, 29(7), 518–530. https://doi.org/10.1111/mice.12075
Zhu, Y., Chen, F., Li, M., & Wang, Z. (2018). Inferring the economic attributes of urban rail transit passengers based on individual mobility using multisource data. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10114178
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86347-
dc.description.abstract都市內的捷運路網在近年來快速擴張,使得乘客在捷運系統內有更多的路徑選擇。當乘客有多條合理路徑可供選擇時,轉乘路徑特性便成為其選擇路徑時所考慮的關鍵因素。為了能更準確的預估出捷運系統的路段流量,一個良好的大眾運輸系統旅次指派模式對於大眾運輸規劃是至關重要的。在過往文獻及現今實務所使用之大眾運輸系統旅次指派模式多未考量到旅客在系統當中考慮轉乘路徑特性之路徑選擇行為,然而實際上於不同車站之轉乘對旅客所造成之負效用並非相同且與轉乘站特性相關,因此了解捷運系統之旅客是如何看待與感知轉乘站特性並做出其路徑選擇,此一行為機制值得深入探討。
本研究的目標為探討捷運系統旅客是如何看待轉乘路徑特性並做出路徑選擇。在許多情況下,旅客個人的選擇過程中包含了非補償性選擇策略,因此,本研究採用了限制多項羅吉特模式 (constrained multinomial logit model)以考量旅客對於關鍵轉乘路徑特性的非補償性選擇策略,以更加真實的反應出旅客對於每條可行路徑之態度,並結合多項羅吉特模式 (multinomial logit model) 建立一混合模式作為路徑選擇模式。此外,本研究亦根據所提出的路徑選擇模式估計結果進一步發展一歸屬模式 (membership model),以探討各種旅次特性與其所對應之非補償性行為之關聯。本透過綜合敘述性及顯示性偏好問卷調查旅客之路徑選擇以及對各使用轉乘站的感知,其調查結果為後續模式發展所使用。
本研究係針對臺北捷運系統及其乘客進行研究,經分析後證實使用本研究所提出之模型可以更好地描繪乘客實際路經選擇行為,提出之混合模式之適配度也優於傳統多項羅吉特模式。本研究也得到不同旅次分群下的非補償性行為參數,並對每一分群之特性進行探討。
本研究結果可用於捷運系統興建前之運量預測及營運時之人流掌控,尤其是針對轉乘設施規劃更可利用本研究提出之路徑選擇模式對該轉乘站之轉乘流量進行估計。更加理解旅客對轉乘特性之感知和相關態度後,本研究之發現可以作為設計及營運部門在制定及規劃更有效率及具吸引力的轉乘環境時之參考基準。
zh_TW
dc.description.abstractTransfer stations connect two or more lines in a metro system which enables passengers to switch across lines to reach their destination. Passengers’ path choice behavior is highly affected by the design of transfer stations in a complex metro network that provides passengers with multiple path alternatives. Hence, the layout of transfer stations is gaining impact on passengers’ path choices in an expanding metro network. To better design transfer stations and network operation, a comprehensive understanding of passenger behavior is critical and essential for transportation planning and management.
Accordingly, this study investigates metro passengers’ perception of transfer stations through an online questionnaire survey and further develops a path choice model that can reflect the effects of different types of transfers and the attributes of transfer paths. Also, a membership model is constructed to identify four groups with different thresholds of transfer walking time. To model the path choice behavior with thresholds on the critical attributes of transfers, this study adopts the Constrained Multinomial Logit Model (CMNL) to capture both compensatory and non-compensatory behavior.
A case study on Taipei Metro, which services two million passengers a day over Taipei Metropolitan Area, is conducted to validate the proposed model. The result shows that the prediction accuracy of the proposed model is significantly higher than a Pure-MNL model and allows a more convincing explanation of passengers’ behavior with the groups of passengers specified. Several novel findings are derived from this study, including that in-vehicle travel time may not significantly affect path choice of passengers with non-compensatory behavior. Moreover, transfer walking time is more negatively perceived by passengers without non-compensatory behavior. Based on the improved understanding of passengers’ path choice behavior and attitudes toward attributes of transfer stations, the relevant authorities may be able to have a precise prediction of traffic volume of both new lines and new transfer stations and further provide more quality service with more effective operating strategies.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:50:28Z (GMT). No. of bitstreams: 1
U0001-2508202213263800.pdf: 8811797 bytes, checksum: f599dc8acd13df595f78a606883cc585 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES IX
LIST OF TABLES XII
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation and Objective 12
1.3 Organization 12
CHAPTER 2 LITERATURE REVIEW 15
2.1 Path Choice and Transit Assignment over Metro Networks 15
2.2 Transfer and Characteristics of Metro Transfer Stations 18
2.2.1 Characteristics of Passengers and Trips 18
2.2.2 Characteristics of Transfer Stations 20
2.3 Discrete Choice Models and Choice Set Formation 23
2.4 Summary of Literature Review 26
CHAPTER 3 PROBLEM STATEMENT AND METHODOLOGY 28
3.1 Problem Statement 28
3.2 Research Framework 28
3.3 Survey Design 29
3.3.1 Questionnaire Design 29
3.3.2 Survey Process 31
3.4 Path Choice Modelling 34
3.4.1 The Constrained Multinomial Logit Model (CMNL) 34
3.4.2 Estimation of CMNL 37
3.4.3 Hybrid Model of CMNL with MNL 38
3.4.4 Modified Estimation Process of Hybrid Model with Segmentation 40
3.5 Passenger Segmentation Membership Model 44
CHAPTER 4 MODEL DEVELOPMENT AND ESTIMATION RESULTS 45
4.1 Data Cleansing and Descriptions 45
4.1.1 Data Cleansing 45
4.1.2 Data Description 49
4.2 Estimation Result of Path Choice Model 61
4.2.1 Collinearity and Specification of Path Choice Model 62
4.2.2 Development of Hybrid Model 67
4.3 Estimation Result of Passenger Segmentation Membership Model 81
4.3.1 Characteristic of Passengers 84
4.3.2 Characteristic of Trips 85
4.4 Scenario Analysis and Model Validation 86
CHAPTER 5 CONCLUSIONS 97
5.1 Conclusions 97
5.2 Limitation and Future Work 98
REFERENCE 100
APPENDIX A 112
APPENDIX B 132
APPENDIX C 134
-
dc.language.isoen-
dc.title考量轉乘特性之捷運系統旅客路徑選擇研究zh_TW
dc.titleStudy of Metro Passengers’ Path Choice Behavior Considering Characteristics of Transfer Tripsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.author-orcid0000-0002-4494-2935
dc.contributor.advisor-orcid許聿廷(0000-0001-7467-0101)
dc.contributor.coadvisor賴勇成zh_TW
dc.contributor.coadvisorYung-Cheng Laien
dc.contributor.coadvisor-orcid賴勇成(0000-0003-4927-227X)
dc.contributor.oralexamcommittee林楨家;鍾易詩zh_TW
dc.contributor.oralexamcommitteeJen-Jia Lin;Yi-Shih Chungen
dc.contributor.oralexamcommittee-orcid林楨家(0000-0002-7010-7132),鍾易詩(0000-0003-1269-1411)
dc.subject.keyword大眾運輸規劃,路徑選擇行為,轉乘站設計,非補償性選擇策略,限制多項羅吉特模式,zh_TW
dc.subject.keywordPublic Transportation Planning,Path Choice Behavior,Transfer Station Design,Non-Compensatory Behavior,Constrained Multinomial Logit Model (CMNL),en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202202802-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-08-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2024-12-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf8.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved