請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86342
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳政鴻(Cheng-Hung Wu) | |
dc.contributor.author | Ching-Chun Cheng | en |
dc.contributor.author | 鄭敬錞 | zh_TW |
dc.date.accessioned | 2023-03-19T23:50:11Z | - |
dc.date.copyright | 2022-08-31 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-25 | |
dc.identifier.citation | 張森林、劉文讓(2014),三大法人在股票市場的資訊交易行為探討,財團法人中華經濟研究院。 Aharon D.Y., and Demir E. 2021. NFTs and asset class spillovers: Lessons from the period around the COVID-19 pandemic. Finance Research Letters. Bao H., Roubaud D. 2022. Non-Fungible Token: A Systematic Review and Research Agenda. Journal of Risk and Financial Management. 15(5): 215. Bastian M., Heymann S., Jacomy M. 2009. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. Blondel V.D., Guillaume J-L., Lambiotte R. and Lefebvre E. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008. Chalmers D., Fisch C., Matthews R., Quinn W., and Recker J. 2022. Beyond the bubble: Will NFTs and digital proof of ownership empower creative industry entrepreneurs? Journal of Business Venturing Insights 17: e00309 Chohan R., and Paschen J. 2021. What marketers need to know about non-fungible tokens (NFTs). Business Horizons. Diebold F.X., Yilmaz K., 2009. Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119 (534) : 158-171 Diebold F.X., Yilmaz K., 2012. Better to give than to receive: predictive directional measurement of volatility spillovers. International Journal of forecasting, 28 (1) : 57-66 Dowling M. 2022a. Fertile LAND: Pricing non-fungible tokens. Finance Research Letters 44: 102096. Dowling M. 2022b. Is non-fungible token pricing driven by cryptocurrencies? Finance Research Letters 44: 102097. Entriken W., Shirley D., Evans J., Sachs N. 2018. EIP-721: Non-Fungible Token Standard,' Ethereum Improvement Proposals, no. 721. Fortunato S., Barthelemy M. 2007. Resolution limit in community detection. Proceedings of the national academy of sciences 104(1): 36-41. Freeman, L. 1979. Centrality in social network: conceptual clarification. Social Networks. 1: 215-239. Haaften-Schick L., and Whitaker A. 2022. From the artist’s contract to the blockchain ledger: New forms of artists’ funding using equity and resale royalties. Journal of Cultural Economy. Jackson M.O., 2019. The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviors. Karim S., Lucey B.M., Naeem M.A., and Uddin G.S. 2022. Examining the interrelatedness of NFTs, DeFi tokens and cryptocurrencies. Finance Research Letters. in press. Ko H., Son B., Lee Y., Jang H., and Lee J. 2022. The economic value of NFT: Evidence from a portfolio analysis using mean-variance framework. Finance Research Letters 47: 102784. Lindquist M.J., Zenou Y. 2019. Oxford Review of Economic Policy 35(4):746-771. Maouchi Y., Charfeddine L., and Montasser G.E. 2021. Understanding digital bubbles amidst the COVID-19 pandemic: Evidence from DeFi and NFTs. Finance Research Letters. Newman M.E.J., and Girvan M., 2003. Finding and evaluating community structure in networks. Physical Review E vol. 69. Ozsoylev H.N., Walden J., Yavuz M.D. and Bildik R., 2014. Investor Networks in the Stock Market. Review of Financial Studies, Society for Financial Studies, vol. 27(5) : 1323-1366. Schaar L., Kampakis S. 2022. Non-Fungible Tokens as an Alternative Investment: Evidence from CryptoPunks. The Journal of The British Blockchain Association, January. Umar Z., Gubareva M., Teplova T., and Tran. 2022. COVID-19 impact on NFTs and major asset classes interrelations: Insights from the wavelet coherence analysis. Finance Research Letters. Vidal-Tomás D. 2022. The new crypto niche: NFTs, play-to-earn, and metaverse tokens. Finance Research Letters. Wilson, Bridget K., Karg A., and Ghaderi H. 2021. Prospecting non-fungible tokens in the digital economy: Stakeholders and ecosystem, risk and opportunity. Business Horizons. Yousaf I., and Yarovaya L. 2022. Static and dynamic connectedness between NFTs, Defi and other assets: Portfolio implication. Global Finance Journal 53: 100719. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86342 | - |
dc.description.abstract | 非同質性代幣NFT(Non-Fungible Token)自國際知名拍賣行「佳士得」2021年拍賣出史上最高金額6900萬美金的數位藝術品NFT《EVERYDAYS: THE FIRST 5000 DAYS》(每一天:最初的五千天),改變了美國數位藝術創作者Beeple的一生,讓他榮登全球拍賣成交金額第三高位的在世藝術家(Living artists),以及改變藝術拍賣市場的商業模式,創造全新的市場商機。 本文透過社會網絡分析法與個案研究,找出扮演在NFT藍籌項目中關鍵影響力的交易者、平台或智能合約的特徵,透過了解這些有影響力的交易者,刻劃出NFT藍籌社群影響者的樣態,與其獲利表現進行比較。並進一步探討巨鯨(Whale)在NFT的「交易」網絡關係,探索其獲利是否有顯著的正向表現,過去的NFT研究多著重在資產定價,較缺乏對整體社群與影響者特徵的分析。 本文發現社會網絡分析法主要指標可快速找出較受歡迎的服務與影響者,其方法中的模組度分類分群有可靠度,可有效的辨認未知的位址是與哪個社群相關,此外也發現在鏈上影響力大不一定代表在實際的社群(如:Twitter)影響力也大。 而在 CryptoPunks影響者與巨鯨的獲利表現中發現以下幾點:一、發現點度中心性排名前十大節點獲利高,可能為潛在的獲利指標;二、具有影響力的節點仍有可能為非獲利的兩種情況:短暫持有錢包或為智能合約;三、巨鯨數量相對與整體網絡佔比為7.08%,但交易量佔比卻超過27.6%,具顯著的價格操作可能;四、前十大點度中心性排行的巨鯨,總獲利的表現非常驚人,獲利最高可達2993萬美金,最低73萬美金,而且中介中心性與特徵向量中心性也在前3% 的排名內。 | zh_TW |
dc.description.abstract | NFT (Non-Fungible Token) will auction the digital artwork NFT 'EVERYDAYS: THE FIRST 5000 DAYS', changed the whole life of Beeple, an American digital art creator, made him the third-highest living artist in the world in terms of auction turnover, and which changed the business model of the art auction market, creating new market opportunities. Through social network analysis and case studies, this paper finds out the characteristics of traders, platforms or smart contracts that play a key role in NFT blue-chip projects. By understanding these influential traders, we can characterize the influence of the NFT blue-chip community and compare their profit performance. Moreover, we will further investigate the 'trading' network relationship of Whale in NFT and explore whether its profit has a significant positive performance. In the past, NFT research mostly focused on asset pricing, and lacked analysis of the characteristics of the overall community and influencers. This paper finds that the main indicators of the social network analysis method that can quickly find out the more popular services and influencers, and the modular classification and grouping in the method has a certain degree of reliability, which can effectively identify which community an unknown address is related to , and also found that a large influence on the chain does not necessarily mean a large influence in the actual community (such as Twitter). Based on the profit performance of CryptoPunks influencers and giant whales, we observed a few points: 1. It is found that the top ten nodes in the centrality of the point have high profits, which may be potential profit indicators; 2. The influential nodes are still possible. Two situations that are not profitable: holding wallets for a short time or smart contracts; 3. The number of giant whales accounts for 7.08% of the overall network, but the transaction volume accounts for more than 27.6%, which has a significant possibility of price manipulation; 4. The top ten giant whales ranked in the top ten point centrality, the total profit performance is still very amazing, the highest profit can reach up to 29.93 million US dollars, and the lowest can be 730,000 US dollars, and the intermediary centrality and eigenvector centrality are also in the top 3 percentage ranking. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:50:11Z (GMT). No. of bitstreams: 1 U0001-2408202216581400.pdf: 3688180 bytes, checksum: 7d4d9168457ceb07d038c908a38d6325 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 1 第二章 文獻回顧 2 2.1非同質化代幣 (NON-FUNGIBLE TOKEN, NFT) 2 2.2 社會網絡分析法 5 第三章 研究架構與方法 7 3.1 研究架構 7 3.2 研究方法 9 3.2.1社會網絡分析法 9 3.2.2點度中心性(Degree centrality) 9 3.2.3中介中心性(Betweenness centrality) 10 3.2.4特徵向量中心性(Eigenvector centrality) 10 3.2.5社會網絡分析軟體Gephi 13 3.2.6區塊鏈瀏覽器Etherscan 13 3.2.7以太坊域名服務(Ethereum Name Service, ENS) 14 3.2.8 NFT分析平台NFTGO 15 3.2.9 CryptoPunks官方查詢系統Cryptopunks.app 15 3.3 資料集與資料處理流程 17 第四章CRYPTOPUNKS 社會網絡分析與個案研究 19 4.1 CRYPTOPUNKS項目介紹 19 4.2描述性統計 20 4.2.1智能合約互動分析 20 4.2.2智能合約互動前十名個案研究 24 4.3社會網絡指標分析 28 4.3.1中心性指標相關係數分析 29 4.3.2社會網絡圖與點度中心性分析 29 4.3.3前十大點度中心性網絡與節點分析 31 4.3.4前十大點度中心性個案整理比較 39 4.3.5前十大節點中心性綜合排名比較 41 4.4巨鯨在CRYPTOPUNKS交易網絡所扮演的角色 42 4.4.1整體網絡、前十大巨鯨社群的中心性指標與獲利之間的關係 45 4.4.2前十大點度中心性排名的巨鯨與獲利表現 46 第五章 結論與建議 47 5.1 CryptoPunks影響者與社群的特徵 47 5.2 CryptoPunks影響者與巨鯨的獲利表現 48 5.3研究的限制與未來建議 48 參考文獻 50 圖目錄 圖 1、EIP-721 2 圖2 、研究架構圖 7 圖3 、研究流程圖 8 圖4、點度中心性 9 圖5、特徵向量中心性 11 圖6、特徵向量相鄰矩陣 11 圖7、向量Y中心性計算 11 圖8、特徵向量乘積結果 12 圖9、特徵向量求解 12 圖10、ETHERSCAN特定位址的分析結果 13 圖11、0XD387A6E4E84A6C86BD90C158C6028A58CC8AC459該位址的持有的ENS域名 14 圖12、NFTGO特定位址的分析結果 15 圖13、CRYPTOPUNKS前十名持有者 15 圖14、CRYPTOPUNKS前12大銷售金額 20 圖15、CRYPTOPUNKS第1筆交易區塊鏈上資料 23 圖16,WRAPPED PUNKS官網首頁 24 圖17,智能合約多簽錢包交易執行機制 25 圖18、NFTX官網 26 圖19、JPEGD抵押協議運作 27 圖20,GEM NFT聚合交易平台 27 圖21、CRYPTOPUNKS 網絡圖 29 圖22、點度中心性次數分佈圖 30 圖23、前十大點度中心性節點關係 31 圖24、節點2092區塊鏈查詢結果 31 圖25、節點8320 CRYPTOPUNKS NFT銷售交易 32 圖26、PUNKOTC TWITTER 個人資料頁 33 圖27、HEMBA TWITTER個人資料頁 34 圖28、PRANKSY TWITTER個人資料頁 34 圖29、節點7307區塊鏈查詢結果 35 圖30、節點5085 CRYPTOPUNKS NFT銷售交易 36 圖31、節點8320 CRYPTOPUNKS NFT 轉移流向 36 圖32、節點732 CRYPTOPUNKS NFT銷售交易 37 圖33、WILCOX TWITTER個人資料頁 37 圖34、NFTX官網 38 圖35、前十大點度中心性節點名稱整理 40 圖36、巨鯨社群分類頻率與累積分佈 44 表目錄 表 1、NFT文獻研究回顧 3 表 2、智能合約互動類型統計 20 表3:CRYPTOPUNKS智能合約互動前十名 23 表4、CRYPTOPUNKS 網絡指標 28 表5、CRYPTOPUNKS中心性相關係數比較 29 表6、點度中心性次數分佈表 30 表7、前十大點度中心性節點整理 39 表8、前十大節點中心性綜合排名比較 41 表9、巨鯨節點與巨鯨交易筆數佔整體比率 42 表10、巨鯨社群頻率與累積分佈 42 表11、前十大社群總規模大小比、巨鯨佔比、社群總獲利 44 表12、整體網絡,中心性與獲利之間的相關性 45 表13、巨鯨網絡,中心性與獲利之間的相關性 45 表14、前十大點度排名巨鯨總獲利表現 46 | |
dc.language.iso | zh-TW | |
dc.title | NFT社會網絡分析初探:以CryptoPunks為例 | zh_TW |
dc.title | A Preliminary Exploration of NFT Social Network Analysis: CryptoPunks | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳文智(Wen-Chih Chen),黃奎隆(Kwei-Long Huang),周育樂(Ywh-Leh Chou) | |
dc.subject.keyword | NFT,CryptoPunks,社會網絡分析,巨鯨, | zh_TW |
dc.subject.keyword | NFT,CryptoPunks,Social Network Analysis,Whales, | en |
dc.relation.page | 52 | |
dc.identifier.doi | 10.6342/NTU202202772 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-08-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-08-31 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2408202216581400.pdf | 3.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。