Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86339
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐尚德(Shang-Te Hsu)
dc.contributor.authorNing-En Changen
dc.contributor.author張寧恩zh_TW
dc.date.accessioned2023-03-19T23:50:00Z-
dc.date.copyright2022-08-31
dc.date.issued2022
dc.date.submitted2022-08-25
dc.identifier.citationZhao, X., Ding, Y., Du, J. & Fan, Y. 2020 update on human coronaviruses: One health, one world. Med Nov Technol Devices 8, 100043, doi:10.1016/j.medntd.2020.100043 (2020). Sturman, L. S. & Holmes, K. V. in Advances in Virus Research Vol. 28 (eds Max A. Lauffer & Karl Maramorosch) 35-112 (Academic Press, 1983).‵ Liu, D. X., Liang, J. Q. & Fung, T. S. in Encyclopedia of Virology 428-440 (2021). Jiang, S., Hillyer, C. & Du, L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Millet, J. K., Jaimes, J. A. & Whittaker, G. R. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev 45, doi:10.1093/femsre/fuaa057 (2021). Gui, M. et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27, 119-129, doi:10.1038/cr.2016.152 (2017). Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 114, E7348-E7357, doi:10.1073/pnas.1707304114 (2017). Yang, T.-J. et al. Structure-activity relationships of B.1.617 and other SARS-CoV-2 spike variants. bioRxiv, 2021.2009.2012.459978, doi:10.1101/2021.09.12.459978 (2021). Kirchdoerfer, R. N. et al. Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118-121, doi:10.1038/nature17200 (2016). Zhang, K. et al. A 3.4-A cryo-electron microscopy structure of the human coronavirus spike trimer computationally derived from vitrified NL63 virus particles. QRB Discov 1, e11, doi:10.1017/qrd.2020.16 (2020). Song, X. et al. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes. Nat Commun 12, 141, doi:10.1038/s41467-020-20401-y (2021). Wang, C. et al. Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nat Commun 13, 2921, doi:10.1038/s41467-022-30658-0 (2022). Tang, T., Bidon, M., Jaimes, J. A., Whittaker, G. R. & Daniel, S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 178, 104792, doi:10.1016/j.antiviral.2020.104792 (2020). Breitling, J. & Aebi, M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5, a013359, doi:10.1101/cshperspect.a013359 (2013). Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9, 944-957, doi:10.1038/nrm2546 (2008). Gecht, M. et al. GlycoSHIELD: a versatile pipeline to assess glycan impact on protein structures. bioRxiv, 2021.2008.2004.455134, doi:10.1101/2021.08.04.455134 (2022). Watanabe, Y. et al. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci U S A 115, 7320-7325, doi:10.1073/pnas.1803990115 (2018). Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296, doi:10.1038/nmeth.4169 (2017). Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25, doi:10.1002/pro.3235 (2018). Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, doi:10.7554/eLife.42166 (2018). Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303, doi:10.1093/nar/gky427 (2018). Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501, doi:10.1107/S0907444910007493 (2010). Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221, doi:10.1107/S0907444909052925 (2010). Kuo, C. W. et al. Distinct shifts in site-specific glycosylation pattern of SARS-CoV-2 spike proteins associated with arising mutations in the D614G and Alpha variants. Glycobiology 32, 60-72, doi:10.1093/glycob/cwab102 (2022). Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29, 1859-1865, doi:10.1002/jcc.20945 (2008). Jo, S., Song, K. C., Desaire, H., MacKerell, A. D., Jr. & Im, W. Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins. J Comput Chem 32, 3135-3141, doi:10.1002/jcc.21886 (2011). Park, S. J. et al. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank. Bioinformatics 33, 3051-3057, doi:10.1093/bioinformatics/btx358 (2017). Park, S. J. et al. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 29, 320-331, doi:10.1093/glycob/cwz003 (2019). Grant, O. C., Montgomery, D., Ito, K. & Woods, R. J. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci Rep 10, 14991, doi:10.1038/s41598-020-71748-7 (2020). Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J Struct Biol 213, 107702, doi:10.1016/j.jsb.2021.107702 (2021). Watanabe, Y. et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat Commun 11, 2688, doi:10.1038/s41467-020-16567-0 (2020). Walls, A. C. et al. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 176, 1026-1039 e1015, doi:10.1016/j.cell.2018.12.028 (2019). Casalino, L. et al. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Cent Sci 6, 1722-1734, doi:10.1021/acscentsci.0c01056 (2020). Woo, H. et al. Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. J Phys Chem B 124, 7128-7137, doi:10.1021/acs.jpcb.0c04553 (2020). Park, Y. J. et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol 26, 1151-1157, doi:10.1038/s41594-019-0334-7 (2019). Tortorici, M. A. et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26, 481-489, doi:10.1038/s41594-019-0233-y (2019). Hulswit, R. J. G. et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci U S A 116, 2681-2690, doi:10.1073/pnas.1809667116 (2019). Prabakaran, P. et al. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem 281, 15829-15836, doi:10.1074/jbc.M600697200 (2006). Hwang, W. C. et al. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J Biol Chem 281, 34610-34616, doi:10.1074/jbc.M603275200 (2006). Pak, J. E. et al. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. J Mol Biol 388, 815-823, doi:10.1016/j.jmb.2009.03.042 (2009). Wrapp, D. et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181, 1004-1015 e1015, doi:10.1016/j.cell.2020.04.031 (2020). Ying, T. et al. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody. Nat Commun 6, 8223, doi:10.1038/ncomms9223 (2015). Wang, L. et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 6, 7712, doi:10.1038/ncomms8712 (2015). Yu, X. et al. Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27. Sci Rep 5, 13133, doi:10.1038/srep13133 (2015). Li, Y. et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res 25, 1237-1249, doi:10.1038/cr.2015.113 (2015). Chen, Z. et al. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset. J Infect Dis 215, 1807-1815, doi:10.1093/infdis/jix209 (2017). Zhang, S. et al. Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein. Cell Rep 24, 441-452, doi:10.1016/j.celrep.2018.06.041 (2018). Wang, L. et al. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. J Virol 92, doi:10.1128/JVI.02002-17 (2018). Zhou, H. et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun 10, 3068, doi:10.1038/s41467-019-10897-4 (2019). Wang, N. et al. Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Cell Rep 28, 3395-3405 e3396, doi:10.1016/j.celrep.2019.08.052 (2019). Jang, T. H. et al. The structure of a novel antibody against the spike protein inhibits Middle East respiratory syndrome coronavirus infections. Sci Rep 12, 1260, doi:10.1038/s41598-022-05318-4 (2022). Fedry, J. et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Science Advances 7, eabf5632, doi:doi:10.1126/sciadv.abf5632 (2021). Cheng, Y. Single-Particle Cryo-EM at Crystallographic Resolution. Cell 161, 450-457, doi:10.1016/j.cell.2015.03.049 (2015). Pritchard, L. K. et al. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat Commun 6, 7479, doi:10.1038/ncomms8479 (2015). Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369, 330-333, doi:doi:10.1126/science.abb9983 (2020).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86339-
dc.description.abstract人類冠狀病毒屬於網巢病毒目,其可藉由動物傳播給人類,為一種人畜共通的病原體。冠狀病毒主要通過病毒細胞膜上高度醣基化的棘蛋白與宿主細胞上的受體結合,促進病毒與宿主細胞膜的融合,達到病毒入侵的目的。醣基化修飾是一種蛋白質的轉譯後修飾,在棘蛋白的建構中扮演非常重要的角色。因此,了解醣基化棘蛋白的結構與分子動態對受體免疫辨識的影響將有助於後續的預防以及抗病毒治療的發展。在本研究中,我們主要討論屬於乙型冠狀病毒屬的三種人類冠狀病毒,包括嚴重急性呼吸道症候群冠狀病毒(SARS-CoV)、中東呼吸症候群冠狀病毒(MERS-CoV)以及人類冠狀病毒HKU1(hCoV-HKU1)。我們通過哺乳動物細胞蛋白質表達系統製備重組棘蛋白,並藉由差示掃描量熱法(DSC)以及差示掃描螢光法(DSF)分析在不同物化條件下的蛋白質穩定性,接著利用冷凍電子顯微鏡(cryo-EM)解析出受體結合區域在中東呼吸症候群冠狀病毒棘蛋白中的不同構型。為了更進一步瞭解蛋白質表面N-醣基化修飾的化學組成和結構,我們使用質譜儀鑑定在特定醣化位點上的不同醣型,並在GlycoSHIELD的幫助下建立棘蛋白的醣化模型,定量描述N-醣基化修飾對於棘蛋白表面所形成的遮蔽效應,結果表明棘蛋白表面的局部抗原性與醣基化修飾所形成的遮蔽效應間呈現負相關。綜上所述,我們的研究建立一個完整的流程探討醣基化修飾在棘蛋白表面的影響,並且具有預測潛在受體與輔助受體結合區以及抗原決定位的能力。zh_TW
dc.description.abstractHuman coronaviruses (hCoVs) belong to the order Nidovirales, which are zoonotic pathogens that evolve to infect humans. CoVs use highly glycosylated spike proteins to bind to host receptor(s), the first step towards host membrane fusion and viral entries. As the post-translationally modified glycans constitute a significant part of the overall structures of the spike proteins, understanding their structures and dynamics in the context of receptor and immunity recognition is essential for developing preventions and antivral treatments. Here, we focused on three hCoV spike proteins in the genus Betacoronavirus, including SARS-CoV, MERS-CoV and hCoV-HKU1. We produced the recombinant spike proteins by a mammalian protein expression system. The folding stabilities over a range of experimental conditions were evaluated by differential scanning calorimeter (DSC) and differential scanning fluorimeter (DSF). We also employed single particle analysis by cryo-electron microscopy (cryo-EM) to determine four distinct structures of the MESR-CoV spike protein that differed in the different conformations of the receptor-binding domain (RBD). To characterize the chemical compositions and structures of the surface glycans, we used mass spectrometry to determine site-specifically the glycoforms of individual N-linked glycans. We further implemented a modelling procedure by GlycoSHIELD to quantitatively describe the shielding effect of the N-glycans on the spike proteins. Our results revealed that the local antigenicity of the spike proteins negatively correlated with the extent of protein surface shielding by the N-glycans. Collectively, our study provided a robust workflow to determine the molecular structure of CoV spike proteins in the context of the shielding effect of glycosylation with the ability to predict potential (co)receptor binding sites and epitopes for antibody binding.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:50:00Z (GMT). No. of bitstreams: 1
U0001-2308202218454300.pdf: 31669761 bytes, checksum: a636401c573eb4ceac7eec32e8974dcc (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文摘要 i ABSTRACT ii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Abbreviations ix Chapter 1 INTRODUCTION 1 1.1 Human coronaviruses 1 1.2 Structural features of spike (S) protein 2 1.3 Protein N-glycosylation 5 1.4 Cryo-EM, mass spectrometry and MD simulation in glycosylated S proteins 6 1.5 Specific aims 8 Chapter 2 MATERIAL AND METHODS 9 2.1 Construct design 9 2.2 Protein expression and purification 9 2.3 Differential scanning fluorimeter (DSF) 10 2.4 Differential scanning calorimetry (DSC) 10 2.5 Negative staining electron microscopy (NSEM) analysis 11 2.6 Cryo-EM grid preparation and Data collection 11 2.7 Image processing and 3D reconstruction 12 2.8 Model building and refinement 13 2.9 In-gel proteolytic digestion of the S proteins (Digestion protocol A) 14 2.10 In-solution proteolytic digestion of the S proteins (Digestion protocol B) 15 2.11 In-solution proteolytic digestion of the S proteins (Digestion protocol C) 15 2.12 Glycopeptide analysis by liquid chromatography-mass spectrometry 16 2.13 Glycopeptide identification and quantification 16 2.14 Representative Glycoforms selection of the S proteins 17 2.15 Atomic model building of fully glycosylated S proteins by CHARMM-GUI 19 2.16 Glycan shield modeling with GlycoSHIELD 20 Chapter 3 RESULTS 22 3.1 Expression and validation of S proteins 22 3.2 Structural heterogeneity of the MRES-CoV S protein 27 3.3 The workflow for N-glycopeptide analysis 32 3.4 Site-specific N- glycosylation analysis of the SARS-CoV S protein 35 3.5 Site-specific N glycosylation analysis of the MERS-CoV S protein 46 3.6 Site-specific N glycosylation analysis of the hCoV-HKU1 S protein 54 3.7 Quantifying the N-glycan shielding effects on S proteins by GlycoSHIELD 64 Chapter 4 DISCUSSION 73 4.1 The limitation of structure resolution in our cryo-EM single particle analysis 73 4.2 The inherent variation in N-glycopeptide sample preparation 75 4.3 The interplay between N-glycan maturation and the local environment 76 4.4 The limitations of GlycoSHIELD analysis pipeline 77 4.5 The roles of glycans in modulating S protein conformations 79 REFERENCES 83 APPENDIX 88
dc.language.isoen
dc.subject醣蛋白zh_TW
dc.subject棘蛋白zh_TW
dc.subject分子模擬zh_TW
dc.subject質譜儀zh_TW
dc.subject醣基化修飾之遮蔽效應zh_TW
dc.subject冷凍電子顯微鏡zh_TW
dc.subjectcryo-EMen
dc.subjectspike proteinsen
dc.subjectmolecular modelingen
dc.subjectmass spectrometryen
dc.subjectglycan shieldingen
dc.subjectglycoproteinsen
dc.title透過冷凍電子顯微鏡、質譜儀以及分子模擬探討人類冠狀病毒棘蛋白其結構與功能之關係zh_TW
dc.titleStructure-function relationships of human coronavirus spike proteins by cryo-EM, mass spectrometry and molecular modelingen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-7841-3751
dc.contributor.oralexamcommittee邱繼輝(Kay-Hooi Khoo),吳昆峯(Kuen-Phon Wu),嚴欣勇(Hsin-Yung Yen)
dc.subject.keyword棘蛋白,醣蛋白,醣基化修飾之遮蔽效應,冷凍電子顯微鏡,質譜儀,分子模擬,zh_TW
dc.subject.keywordspike proteins,glycoproteins,glycan shielding,cryo-EM,mass spectrometry,molecular modeling,en
dc.relation.page113
dc.identifier.doi10.6342/NTU202202723
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2024-09-01-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2308202218454300.pdf30.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved