Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86322
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 孔令傑(Ling-Chieh Kung) | |
dc.contributor.author | Tung-Sheng Cho | en |
dc.contributor.author | 卓東昇 | zh_TW |
dc.date.accessioned | 2023-03-19T23:49:01Z | - |
dc.date.copyright | 2022-08-31 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-26 | |
dc.identifier.citation | 王郁倫(2021)。台灣企業60%是數據新手!看好「即服務」商機,戴爾全球喊推APEX。數位時代。民111年8月4日,取自:https://www.bnext.com.tw/article/65128/dell-as-a-service-data 台灣經濟研究院(2018)。活用數據創造企業新價值。台經社論。民111年8月4日,取自:https://www.tier.org.tw/comment/pec1010.aspx?GUID=82b6c2ce-0afc-4b77-a4c1-4adecd67e1e9 李欣怡(2015)。不懂大數據的5大原則、3大禁忌?小心金礦變災難一場!數位時代2015年No.251。臺北市:巨思文化出版。取自:https://www.bnext.com.tw/article/37416/bn-2015-09-17-182050-84 Alsayat, A., & El-Sayed, H. (2016, June). Social media analysis using optimized K-Means clustering. In 2016 IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 61-66). IEEE. Blattberg, R. C., Kim, B. D., & Neslin, S. A. (2008). RFM analysis. In Database marketing (pp. 323-337). Springer, New York, NY. Chen, D., Sain, S. L., & Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing & Customer Strategy Management, 19(3), 197-208. Cheng, C. H., & Chen, Y. S. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications, 36(3), 4176-4184. Dogan, Y., Birant, D., & Kut, A. (2013, July). SOM++: integration of self-organizing map and k-means++ algorithms. In International Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 246-259). Springer, Berlin, Heidelberg. Lin-Siegler, X., Dweck, C. S., & Cohen, G. L. (2016). Instructional interventions that motivate classroom learning. Journal of Educational Psychology, 108(3), 295. Mojarad, S., Essa, A., Mojarad, S., & Baker, R. S. (2018, June). Data-driven learner profiling based on clustering student behaviors: learning consistency, pace and effort. In International conference on intelligent tutoring systems (pp. 130-139). Springer, Cham. Patel, V. R., & Mehta, R. G. (2011). Impact of outlier removal and normalization approach in modified k-means clustering algorithm. International Journal of Computer Science Issues (IJCSI), 8(5), 331. Šarić-Grgić, I., Grubišić, A., Šerić, L., & Robinson, T. J. (2020). Student clustering Based on learning behavior data in the intelligent tutoring system. International Journal of Distance Education Technologies (IJDET), 18(2), 73-89. Xie, Y., & Phoha, V. V. (2001, October). Web user clustering from access log using belief function. In Proceedings of the 1st international conference on Knowledge capture (pp. 202-208). Zakrzewska, D., & Murlewski, J. (2005, September). Clustering algorithms for bank customer segmentation. In 5th International Conference on Intelligent Systems Design and Applications (ISDA'05) (pp. 197-202). IEEE. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86322 | - |
dc.description.abstract | 數據分析已是現代商業不可或缺的一環,企業也開始蒐集使用者行為數據以作為其商業決策的基礎。但由於企業難以建立兼備產業知識與數據分析能力的團隊,亦難以評估導入效益,導致企業缺乏導入數據分析的意願,即便勉強執行也常導入不順。 本文以線上教學平台導入分群模型作為產品開發基礎為例,詳列企業導入數據分析的過程與挑戰,以作為企業規劃的參考。本文詳細記錄如何使用平台學生端的線上行為數據,透過實際進行數據清理篩除不必要與錯漏的資料,並以敘述性統計方法進行分析後選擇並建立學生特徵值,最後使用簡單統計量分群方法成功建立分群模型,並於教師端與企業端皆取得正面的回饋,成為下一階段產品開發的基礎。 此個案研究驗證了使用者行為資料分析具備提高企業價值的能力,並透過此個案研究記錄了完整資料分析流程與相關實作細節,最後提出企業初期導入及擴大實行的建議。 | zh_TW |
dc.description.abstract | Data analysis has become the most important function of a modern business, and companies also begin collecting user behavior data for their business decisions. However, it is too difficult to recruit a team with both domain knowledge and data analysis capabilities, so the companies are hard to evaluate the benefits of introducing data analysis. Because the companies have few interests to introduce data analysis, and even if they are trying to do so, they often fail. This article takes an online education platform as an example of implementing data analysis in a company. The results of this case were eventually turned into the foundation of product requirements for their future iteration. The article records in detail how to use the online behavior data of students on the platform, removes unnecessary and erroneous data through the data cleaning process, and analyzes it with descriptive statistical methods to select the student features. At last, a clustering model was successfully built by using simple statistical values, and the model got positive feedback from both the teacher and the enterprise. This case study assures that user behavior data analysis is able to improve business value, and records the complete process and implementation details for reference. Finally, the case study concludes with suggestions for the early implementation and the expansion when enterprises introduce data analysis to their business processes. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:49:01Z (GMT). No. of bitstreams: 1 U0001-2508202216575900.pdf: 2446415 bytes, checksum: f4f5534129b8677f26a45c2cdfdc9c97 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與流程 3 第二章 文獻探討 4 2.1 使用者分群於各產業之應用 4 2.2 使用者分群於線上學習平台之相關研究 5 2.3 K-means與RFM比較 6 第三章 實證探討 8 3.1 個案描述 8 3.1.1 個案教學平台概述 8 3.1.2 使用者資料敘述 9 3.1.3 企業期望之資料應用方法與產品標的 9 3.2 資料清理 10 3.2.1 資料欄位定義 10 3.2.2 預計資料清理流程 12 3.2.3 敘述性統計 13 3.2.4 實際清理流程 17 3.2.5 資料清理結果 19 3.3 分群模型建置 20 3.3.1特徵值抽取 20 3.3.2分群模型方法與驗證 24 3.3.3 分群結果 25 3.4 實際回饋與企業導入 29 第四章 結論與建議 31 4.1 研究結論 31 4.2 後續研究建議 31 參考文獻 33 中文文獻 33 英文文獻 33 | |
dc.language.iso | zh-TW | |
dc.title | 使用者行為數據分析:以線上學習歷程紀錄分群為例 | zh_TW |
dc.title | User Behavior Data Analysis: A Case Study of Clustering Online Learning History Records | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余峻瑜(Jiun-Yu Yu),陳聿宏(Yu-Hung Chen) | |
dc.subject.keyword | 數據分析,使用者行為,使用者分群,線上教學平台, | zh_TW |
dc.subject.keyword | data analysis,user behavior,user clustering,on-line education platform, | en |
dc.relation.page | 35 | |
dc.identifier.doi | 10.6342/NTU202202818 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-08-26 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 創業創新管理碩士在職專班 | zh_TW |
dc.date.embargo-lift | 2022-08-31 | - |
Appears in Collections: | 創業創新管理碩士在職專班(EiMBA) |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-2508202216575900.pdf | 2.39 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.