Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86321
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張世宗(Shih-Chung Chang)
dc.contributor.authorShiau-Yu Linen
dc.contributor.author林筱渝zh_TW
dc.date.accessioned2023-03-19T23:48:58Z-
dc.date.copyright2022-08-31
dc.date.issued2022
dc.date.submitted2022-08-26
dc.identifier.citation1. Kaur, N., Singh, R., Dar, Z., Bijarnia, R.K., Dhingra, N., and Kaur, T. (2021). Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. Infect Genet Evol 89, 104490. 2. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733. 3. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. (2020). Nat Microbiol 5, 536-544. 4. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565-574. 5. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. (2022). Available from: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021 6. Rahman, S., Montero, M.T.V., Rowe, K., Kirton, R., and Kunik, F., Jr. (2021). Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Rev Clin Pharmacol 14, 601-621. 7. Rahimi, A., Mirzazadeh, A., and Tavakolpour, S. (2021). Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics 113, 1221-1232. 8. Yang, H., and Rao, Z. (2021). Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 19, 685-700. 9. Zhang, J., Xiao, T., Cai, Y., and Chen, B. (2021). Structure of SARS-CoV-2 spike protein. Curr Opin Virol 50, 173-182. 10.1016/j.coviro.2021.08.010. 10. Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., and Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 17, 613-620. 11. Huang, Y., Yang, C., Xu, X.F., Xu, W., and Liu, S.W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41, 1141-1149. 12. Kadam, S.B., Sukhramani, G.S., Bishnoi, P., Pable, A.A., and Barvkar, V.T. (2021). SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol 61, 180-202. 13. Jackson, C.B., Farzan, M., Chen, B., and Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23, 3-20. 14. Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., et al. (2020). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30, 343-355. 15. Leung, K., Shum, M.H., Leung, G.M., Lam, T.T., and Wu, J.T. (2021). Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill 26, 2002106. 16. Choi, J.Y., and Smith, D.M. (2021). SARS-CoV-2 Variants of Concern. Yonsei Med J 62, 961-968. 17. Farinholt, T., Doddapaneni, H., Qin, X., Menon, V., Meng, Q., Metcalf, G., Chao, H., Gingras, M.C., Avadhanula, V., Farinholt, P., et al. (2021). Transmission event of SARS-CoV-2 delta variant reveals multiple vaccine breakthrough infections. BMC Med 19, 255. 18. Tian, D., Sun, Y., Zhou, J., and Ye, Q. (2021). The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape. Front Immunol 12, 751778. 19. Ferré, V.M., Peiffer-Smadja, N., Visseaux, B., Descamps, D., Ghosn, J., and Charpentier, C. (2022). Omicron SARS-CoV-2 variant: What we know and what we don't. Anaesth Crit Care Pain Med 41, 100998. 20. Thakur, V., and Ratho, R.K. (2022). OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J Med Virol 94, 1821-1824. 21. Kumar, S., Thambiraja, T.S., Karuppanan, K., and Subramaniam, G. (2022). Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J Med Virol 94, 1641-1649. 22. Chaki, S.P., Kahl-McDonagh, M.M., Neuman, B.W., and Zuelke, K.A. (2022). Receptor-Binding-Motif-Targeted Sanger Sequencing: a Quick and Cost-Effective Strategy for Molecular Surveillance of SARS-CoV-2 Variants. Microbiol Spectr, e0066522. 23. Muralidar, S., Ambi, S.V., Sekaran, S., and Krishnan, U.M. (2020). The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 179, 85-100. 24. Vangeel, L., Chiu, W., De Jonghe, S., Maes, P., Slechten, B., Raymenants, J., André, E., Leyssen, P., Neyts, J., and Jochmans, D. (2022). Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 198, 105252. 25. Gavriatopoulou, M., Ntanasis-Stathopoulos, I., Korompoki, E., Fotiou, D., Migkou, M., Tzanninis, I.G., Psaltopoulou, T., Kastritis, E., Terpos, E., and Dimopoulos, M.A. (2021). Emerging treatment strategies for COVID-19 infection. Clin Exp Med 21, 167-179. 26. Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., et al. (2022). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657-663. 27. (!!! INVALID CITATION !!! ). 28. Loo, Y.M., McTamney, P.M., Arends, R.H., Abram, M.E., Aksyuk, A.A., Diallo, S., Flores, D.J., Kelly, E.J., Ren, K., Roque, R., et al. (2022). The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci Transl Med 14, eabl8124. 29. Kim, C., Ryu, D.K., Lee, J., Kim, Y.I., Seo, J.M., Kim, Y.G., Jeong, J.H., Kim, M., Kim, J.I., Kim, P., et al. (2021). A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun 12, 288. 30. Barnes, C.O., Jette, C.A., Abernathy, M.E., Dam, K.A., Esswein, S.R., Gristick, H.B., Malyutin, A.G., Sharaf, N.G., Huey-Tubman, K.E., Lee, Y.E., et al. (2020). SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682-687. 31. Ku, Z., Xie, X., Davidson, E., Ye, X., Su, H., Menachery, V.D., Li, Y., Yuan, Z., Zhang, X., Muruato, A.E., et al. (2021). Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nat Commun 12, 469. 32. Zost, S.J., Gilchuk, P., Case, J.B., Binshtein, E., Chen, R.E., Nkolola, J.P., Schäfer, A., Reidy, J.X., Trivette, A., Nargi, R.S., et al. (2020). Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443-449. 33. Singh, J., Rahman, S.A., Ehtesham, N.Z., Hira, S., and Hasnain, S.E. (2021). SARS-CoV-2 variants of concern are emerging in India. Nat Med 27, 1131-1133. 34. Ren, S.Y., Wang, W.B., Gao, R.D., and Zhou, A.M. (2022). Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases 10, 1-11. 35. Lai, G.C., Chao, T.L., Lin, S.Y., Kao, H.C., Tsai, Y.M., Lu, D.C., Chiang, Y.W., Chang, S.Y., and Chang, S.C. (2022). Neutralization or enhancement of SARS-CoV-2 infection by a monoclonal antibody targeting a specific epitope in the spike receptor-binding domain. Antiviral Res 200, 105290. 36. Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X., et al. (2022). BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593-602. 37. Li, C.J., Chao, T.L., Chang, T.Y., Hsiao, C.C., Lu, D.C., Chiang, Y.W., Lai, G.C., Tsai, Y.M., Fang, J.T., Ieong, S., et al. (2022). Neutralizing Monoclonal Antibodies Inhibit SARS-CoV-2 Infection through Blocking Membrane Fusion. Microbiol Spectr 10, e0181421. 38. Wang, C., Li, W., Drabek, D., Okba, N.M.A., van Haperen, R., Osterhaus, A., van Kuppeveld, F.J.M., Haagmans, B.L., Grosveld, F., and Bosch, B.J. (2020). A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11, 2251. 39. Almagro, J.C., and Fransson, J. (2008). Humanization of antibodies. Front Biosci 13, 1619-1633.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86321-
dc.description.abstract已肆虐全球兩年的SARS-CoV-2病毒,其表面的棘蛋白在病毒入侵宿主細胞上扮演重要角色,尤其是棘蛋白上的受體結合區域 (receptor-binding domain, RBD) 是病毒與人類細胞的血管收縮素轉化酶2 (angiotensin-converting enzyme 2, ACE2) 結合的位置,因此RBD成為中和性抗體的主要標的。但因為RBD為病毒的高度變異區,這類抗體遇到新的突變株時,容易發生免疫逃脫的現象。故本研究以RBD作為標的,開發出六個對於RBD以及棘蛋白都具有高度辨識力的抗體,分別是2A11、2D5、2F9、3B3、3D10和3F4。針對病毒各個變異株進行中和性測試,2F9和3B3對於SARS-CoV-2武漢株具有中和能力;2F9、3B3、3D10和3F4對於Alpha變異株具有中和能力;2A11、2D5、2F9、3B3和3D10則對於Delta變異株具有中和能力;3F4則是唯一對於Omicron BA.1突變株具有中和能力的抗體。本研究使用丙胺酸定點突變的方式,鑑定出單株抗體對RBD的確切結合位。由3F4或2A11以及S2-4A或S2-8D所組成的抗體雞尾酒,對於Omicron BA.2突變株具有加乘成的中和能力。本研究顯示搭配使用RBD抗體與S2 抗體的抗體雞尾酒療法,具有潛力開發成對付新冠病毒感染之預防與治療藥物。zh_TW
dc.description.abstractThe spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARA-CoV-2) is an important viral surface protein for receptor binding and virus-host cell membrane fusion. The receptor-binding domain (RBD) of the S1 subunit of S protein mediates viral binding to human angiotensin-converting enzyme 2 (ACE2). Thus, RBD is considered as the main target of the neutralizing antibodies. Recently, many SARS-CoV-2 variants appear sequence mutations at RBD. Therefore, antibody cocktail is believed to be a better therapeutics for preventing the SARS-CoV-2 immune escape. In the study, monoclonal antibodies (mAbs) 2A11, 2D5, 2F9, 3B3, 3D10 and 3F4 show great specificity to SARS-CoV-2 RBD and S protein. 2F9 and 3B3 exhibit neutralizing activities against SARS-CoV-2 Wuhan strain. 2F9, 3B3, 3D10, and 3F4 exhibit neutralizing activities against SARS-CoV-2 Alpha variant. 2A11, 2D5, 2F9, 3B3, and 3D10 exhibit neutralizing activities against SARS-CoV-2 Delta variant. Only 3F4 exhibits neutralizing activities against SARS-CoV-2 Omicron sublineage BA.1. The binding epitopes of these RBD-specific mAbs were determined by using the alanine-scanning mutagenesis. The antibody cocktail, composed of the RBD-specific mAb 3F4 or 2A11 and the S2-specific mAb S2-4A or S2-8D, exhibits synergistic neutralizing activities against SARS-CoV-2 Omicron sublineage BA.2. The results suggest that the combination of the RBD-specific mAb and the S2-specific mAb are potential candidates for development as prophylactic or therapeutic agents against SARS-CoV-2 infection.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:48:58Z (GMT). No. of bitstreams: 1
U0001-2608202201555300.pdf: 4145980 bytes, checksum: d82bda8ebc3bf1689e3725c62c69a42b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 I 摘要 VI ABSTRACT VII 縮寫表 VIII 第一章 緒論 1 1.1 新型冠狀病毒簡介 1 1.1.1 SARS-CoV-2 1 1.1.2 SARS-CoV-2基因體組成 1 1.1.3 SARS-CoV-2結構蛋白 2 1.1.4 SARS-CoV-2進入宿主細胞之方式 3 1.2 SARS-CoV-2突變株介紹及突變位點 4 1.2.1 Alpha突變株 4 1.2.2 Beta突變株 4 1.2.3 Gamma突變株 4 1.2.4 Delta突變株 5 1.2.5 Omicron突變株 5 1.3 SARS-CoV-2的治療策略 6 1.3.1 阻止病毒進入宿主細胞 6 1.3.2 抑制病毒複製 6 1.3.3 調節免疫系統 6 1.4 Anti-RBD 抗體療法 7 1.4.1 現今RBD抗體 7 1.4.2免疫逃脫 7 1.4.3雞尾酒療法 7 1.5 研究動機與目的 8 第二章 材料與方法 9 2.1 實驗材料 9 2.1.1 大腸桿菌 9 2.1.2 骨髓瘤細胞 9 2.2核酸實驗方法 9 2.2.1 原核表現載體 9 2.2.2 核酸引子設計 10 2.2.3 聚合酶連鎖反應 10 2.2.4 限制酶切反應 11 2.2.5 接合反應 11 2.2.6 質體轉形 11 2.2.7 重組載體之篩選 12 2.2.8 製備質體DNA 12 2.2.9 瓊脂膠體電泳 12 2.2.10 核酸純化 13 2.2.11 核酸定量 13 2.4 蛋白質實驗方法 13 2.4.1 蛋白質定量 13 2.4.2. 聚丙烯醯胺凝膠電泳 14 2.4.3 CBR染色法 14 2.4.4西方點墨法 15 2.4.5 酵素免疫分析法 15 2.5重組蛋白質之表現 16 2.6 重組蛋白質純化 16 2.6.1 純化RBM、RBM-A、RBM-B 16 2.6.2 蛋白質脫鹽 17 2.7 SARS-CoV-2單株抗體製備 17 2.7.1 小鼠免疫 17 2.7.2 融合瘤細胞製備 18 2.7.3 限數稀釋法 19 2.7.4 單株抗體純化 19 2.8 抗體類別測試 20 2.9 抗體結合位測試 20 2.10 RBD定位點突變 20 2.11 病毒溶斑抑制中和試驗 21 2.12 雞尾酒療法之抗體挑選 21 第三章 結果 22 3.1 置備Anti-SARS-CoV-RBD 單株抗體 22 3.1.1 篩選單株抗體 22 3.1.2 純化單株抗體 22 3.2 RBD單株抗體樣態分析與專一性分析 22 3.2.1 RBD單株抗體類別分析 22 3.2.2 RBD單株抗體結合片段分析 23 3.2.3 RBD單株抗體位於RBM的關鍵結合位點分析 23 3.3 RBD單株抗體的中和能力 24 3.3.1 單株抗體對武漢病毒株之中和能力 24 3.3.2 單株抗體對Alpha 突變株之中和能力 24 3.3.3 單株抗體對Delta 突變株之中和能力 25 3.3.4 單株抗體對Omicron 突變株之中和能力 25 3.4抗體雞尾酒之中和性測試 26 3.4.1 抗體雞尾酒對武漢病毒株之中和能力 26 3.4.2 抗體雞尾酒對Omicron BA.2突變株之中和能力 27 第四章 討論 28 4.1 單株抗體結合於RBD之位點探討 28 4.2 單株抗體對於不同SARS-CoV-2病毒株中和能力之探討 29 4.3 單株抗體所組成抗體雞尾酒療法之探討 30 參考文獻 31 圖與表 35 圖一 2A11、2D5、2F9、3B3、3D10及3F4專一性測定 36 圖二 利用Protein G 管柱純化單株抗體2A11、2D5、2F9、3B3、3D10及3F4 37 圖三 2A11、2D5、2F9、3B3、3D10及3F4 抗體類型測定 38 圖四 分析2A11、2D5、2F9、3B3、3D10及3F4辨識的RBD片段 39 圖五 分析2A11、2F9、3B3、3D10及3F4辨識的RBM片段 40 圖六 2A11及3F4位於RBM-A的關鍵結合位點分析 42 圖七 2F9及3B3位於RBM-B的關鍵結合位點分析 43 圖八 以病毒溶斑抑制中和試驗分析RBD單株抗體對武漢株、Alpha突變株、Delta 突變株的中和能力 44 圖九 分析2A11與3F4對於與病毒株相同的突變RBM之結合能力 46 圖十 以病毒溶斑抑制中和試驗分析RBD單株抗體對Omicron突變株的中和能力 47 圖十一 分析Anti-RBD 與Anti-S2 所組成之抗體雞尾酒對武漢病毒株的中和能力 49 圖十二 分析Anti-RBD 與Anti-S2 所組成之抗體雞尾酒對Omicron BA.2 突變株的中和能力 51 圖十三 SARS-CoV-2 RBD 與ACE2結合之結構圖 52 圖十四 2A11及3F4位於RBM-A的關鍵結合位點之3D結構示意圖 53 圖十五 2F9及3B3位於RBM-B的關鍵結合位點之3D結構示意圖以PDB ID 6LZG作為模板,藍點為RBM-B中會與ACE2結合的關鍵位點 54 附錄 55 附錄表一 製備RBM-N439K、RBM-L454R、RBM-Y435F、RBM-E484K 及RBM-N501Y蛋白質表現質體所使用的引子 56 附錄表二 製備RBM-A及RBM-B蛋白質表現質體所使用的引子 57 附錄表三 製備定位點突變RBD之蛋白質表現質體所使用的引子 58
dc.language.isozh-TW
dc.subjectSpike proteinzh_TW
dc.subject單株抗體zh_TW
dc.subject抗體雞尾酒療法zh_TW
dc.subjectReceptor-binding domain (RBD)zh_TW
dc.subjectSARS-CoV-2zh_TW
dc.subjectAntibody cocktailen
dc.subjectSARS-CoV-2en
dc.subjectSpike proteinen
dc.subjectReceptor-binding domainen
dc.subjectMonoclonal antibodyen
dc.title開發新冠病毒中和性抗體雞尾酒療法zh_TW
dc.titleDevelopment of the Neutralizing Antibody Cocktail against SARS-CoV-2en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖憶純(Yi-Chun Liao),黃楓婷(Feng-Ting Huang),林翰佳(Han-Jia Lin),陳威戎(Wei-Jung Chen)
dc.subject.keywordSARS-CoV-2,Spike protein,Receptor-binding domain (RBD),單株抗體,抗體雞尾酒療法,zh_TW
dc.subject.keywordSARS-CoV-2,Spike protein,Receptor-binding domain,Monoclonal antibody,Antibody cocktail,en
dc.relation.page60
dc.identifier.doi10.6342/NTU202202835
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2027-08-24-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2608202201555300.pdf
  此日期後於網路公開 2027-08-24
4.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved