Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86300Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳柏華 | zh_TW |
| dc.contributor.advisor | Albert Y. Chen | en |
| dc.contributor.author | 費聿暄 | zh_TW |
| dc.contributor.author | Yu-Hsuan Fei | en |
| dc.date.accessioned | 2023-03-19T23:47:46Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2022-08-31 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Ibon Eguiluz-Gracia, Alexander G. Mathioudakis, Sabine Bartel, Susanne J.H. Vijverberg, Elaine Fuertes, Pasquale Comberiati, Yutong Samuel Cai, Peter Valentin Tomazic, Zuzana Diamant, Jorgen Vestbo, Carmen Galan, and Barbara Hoffmann. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 75, 2020. [2] Haidong Kan, Renjie Chen, and Shilu Tong. Ambient air pollution, climate change, and population health in china. Environment International, 42, 2012. [3] Intergovernmental Panel on Climate Change. Ipcc's sixth assessment report, 2021. [4] C. Arden Pope, Majid Ezzati, and Douglas W. Dockery. Fine-particulate air pollution and life expectancy in the united states. New England Journal of Medicine, 360, 2009. [5] Gerard Hoek, Ranjini M. Krishnan, Rob Beelen, Annette Peters, Bart Ostro, Bert Brunekreef, and Joel D. Kaufman. Long-term air pollution exposure and cardiorespiratory mortality: A review. Environmental Health: A Global Access Science Source, 12, 2013. [6] Ki Hyun Kim, Ehsanul Kabir, and Shamin Kabir. A review on the human health impact of airborne particulate matter. Environment International, 74, 2015. [7] Zhenyu Luo, Yue Wang, Zhaofeng Lv, Tingkun He, Junchao Zhao, Yongyue Wang, Fei Gao, Zhining Zhang, and Huan Liu. Impacts of vehicle emission on air quality and human health in china. Science of the Total Environment, 813, 2022. [8] Frank J. Kelly and Julia C. Fussell. Air pollution and public health: emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37, 2015. [9] Dai Hua Tsai, Yi Her Wu, and Chang Chuan Chan. Comparisons of commuter's exposure to particulate matters while using different transportation modes. Science of the Total Environment, 405, 2008. [10] Tran Ngoc Quang, Nguyen Thi Hue, Mac Van Dat, Long K. Tran, Thai Ha Phi, Lidia Morawska, and Phong K. Thai. Motorcyclists have much higher exposure to black carbon compared to other commuters in traffic of hanoi, vietnam. Atmospheric Environment, 245, 2021. [11] Hsien Chih Li, Pei Te Chiueh, Shi Ping Liu, and Yu Yang Huang. Assessment of different route choice on commuters' exposure to air pollution in taipei, taiwan. Environmental Science and Pollution Research, 24, 2017. [12] Joshua S. Apte, Kyle P. Messier, Shahzad Gani, Michael Brauer, Thomas W. Kirchstetter, Melissa M. Lunden, Julian D. Marshall, Christopher J. Portier, Roel C.H. Vermeulen, and Steven P. Hamburg. High-resolution air pollution mapping with google street view cars: Exploiting big data. Environmental Science and Technology, 51, 2017. [13] David J. Miller, Blake Actkinson, Lauren Padilla, Robert J. Griffin, Katie Moore, P. Grace Tee Lewis, Rivkah Gardner-Frolick, Elena Craft, Christopher J. Portier, Steven P. Hamburg, and Ramon A. Alvarez. Characterizing elevated urban air pollutant spatial patterns with mobile monitoring in houston, texas. Environmental Science and Technology, 54, 2020. [14] Stacey E. Alexeeff, Ananya Roy, Jun Shan, Xi Liu, Kyle Messier, Joshua S. Apte, Christopher Portier, Stephen Sidney, and Stephen K. Van Den Eeden. High-resolution mapping of traffic related air pollution with google street view cars and incidence of cardiovascular events within neighborhoods in oakland, ca. Environmental Health: A Global Access Science Source, 17, 2018. [15] Timothy Larson, Sarah B. Henderson, and Michael Brauer. Mobile monitoring of particle light absorption coefficient in an urban area as a basis for land use regression. Environmental Science and Technology, 43, 2009. [16] Paul A. Solomon, Dennis Crumpler, James B. Flanagan, R. K.M. Jayanty, Ed E. Rickman, and Charles E. McDade. U.s. national pm2.5 chemical speciation monitoring networks-csn and improve: Description of networks. Journal of the Air and Waste Management Association, 64, 2014. [17] Prashant Kumar, Lidia Morawska, Claudio Martani, George Biskos, Marina Neophytou, Silvana Di Sabatino, Margaret Bell, Leslie Norford, and Rex Britter. The rise of low-cost sensing for managing air pollution in cities. Environment International, 75, 2015. [18] Laura Minet, Rick Liu, Marie France Valois, Junshi Xu, Scott Weichenthal, and Marianne Hatzopoulou. Development and comparison of air pollution exposure surfaces derived from on-road mobile monitoring and short-term stationary sidewalk measurements. Environmental Science and Technology, 52, 2018. [19] Yanju Chen, Peishi Gu, Nico Schulte, Xiaochi Zhou, Steve Mara, Bart E. Croes, Jorn D. Herner, and Abhilash Vijayan. A new mobile monitoring approach to characterize community-scale air pollution patterns and identify local high pollution zones. Atmospheric Environment, 272, 2022. [20] Lauren E. Padilla, Geoffrey Q. Ma, Daniel Peters, Megan Dupuy-Todd, Ella Forsyth, Amy Stidworthy, Jim Mills, Stefan Bell, Idris Hayward, Georgie Coppin, Katie Moore, Elizabeth Fonseca, Olalekan A.M. Popoola, Felicia Douglas, Greg Slater, Karin Tuxen-Bettman, David Carruthers, Nicholas A. Martin, Roderic L. Jones, and Ramon A. Alvarez. New methods to derive street-scale spatial patterns of air pollution from mobile monitoring. Atmospheric Environment, 270, 2022. [21] Marloes Eeftens, Rob Beelen, Kees De Hoogh, Tom Bellander, Giulia Cesaroni, Marta Cirach, Christophe Declercq, Audrius Dedele, Evi Dons, Audrey De Nazelle, Konstantina Dimakopoulou, Kirsten Eriksen, Gregoire Falq, Paul Fischer, Claudia Galassi, Regina Grazuleviciene, Joachim Heinrich, Barbara Hoffmann, Michael Jerrett, Dirk Keidel, Michal Korek, Timo Lanki, Sarah Lindley, Christian Madsen, Anna Molter, Gizella Nador, Mark Nieuwenhuijsen, Michael Nonnemacher, Xanthi Pedeli, Ole Raaschou-Nielsen, Evridiki Patelarou, Ulrich Quass, Andrea Ranzi, Christian Schindler, Morgane Stempfelet, Euripides Stephanou, Dorothea Sugiri, Ming Yi Tsai, Tarja Yli-Tuomi, Mihaly J. Varro, Danielle Vienneau, Stephanie Von Klot, Kathrin Wolf, Bert Brunekreef, and Gerard Hoek. Development of land use regression models for pm2.5, pm 2.5 absorbance, pm10 and pmcoarse in 20 european study areas; results of the escape project. Environmental Science and Technology, 46, 2012. [22] Oliver Schmitz, Rob Beelen, Maciej Strak, Gerard Hoek, Ivan Soenario, Bert Brunekreef, Ilonca Vaartjes, Martin J. Dijst, Diederick E. Grobbee, and Derek Karssenberg. Data descriptor: High resolution annual average air pollution concentration maps for the netherlands. Scientific Data, 6, 2019. [23] Andrew Larkin, Jeffrey A. Geddes, Randall V. Martin, Qingyang Xiao, Yang Liu, Julian D. Marshall, Michael Brauer, and Perry Hystad. Global land use regression model for nitrogen dioxide air pollution. Environmental Science and Technology, 51, 2017. [24] Hyung Joo Lee. Benefits of high resolution pm2.5 prediction using satellite maiac aod and land use regression for exposure assessment: California examples. Environmental Science and Technology, 53, 2019. [25] Xiaomeng Wu, Daoyuan Yang, Ruoxi Wu, Jiajun Gu, Yifan Wen, Shaojun Zhang, Rui Wu, Renjie Wang, Honglei Xu, K. Max Zhang, Ye Wu, and Jiming Hao. Highresolution mapping of regional traffic emissions using land-use machine learning models. Atmospheric Chemistry and Physics, 22, 2022. [26] Steve Hankey, Peter Sforza, and Matt Pierson. Using mobile monitoring to develop hourly empirical models of particulate air pollution in a rural appalachian community. Environmental Science and Technology, 53, 2019. [27] Kyle P. Messier, Sarah E. Chambliss, Shahzad Gani, Ramon Alvarez, Michael Brauer, Jonathan J. Choi, Steven P. Hamburg, Jules Kerckhoffs, Brian Lafranchi, Melissa M. Lunden, Julian D. Marshall, Christopher J. Portier, Ananya Roy, Adam A. Szpiro, Roel C.H. Vermeulen, and Joshua S. Apte. Mapping air pollution with google street view cars: Efficient approaches with mobile monitoring and land use regression. Environmental Science and Technology, 52, 2018. [28] Marianne Hatzopoulou, Marie France Valois, Ilan Levy, Cristian Mihele, Gang Lu, Scott Bagg, Laura Minet, and Jeffrey Brook. Robustness of land-use regression models developed from mobile air pollutant measurements. Environmental Science and Technology, 51, 2017. [29] Andrew G. Rundle, Michael D.M. Bader, Catherine A. Richards, Kathryn M. Neckerman, and Julien O. Teitler. Using google street view to audit neighborhood environments. American Journal of Preventive Medicine, 40, 2011. [30] Kees de Hoogh, Michal Korek, Danielle Vienneau, Menno Keuken, Jaakko Kukkonen, Mark J. Nieuwenhuijsen, Chiara Badaloni, Rob Beelen, Andrea Bolignano, Giulia Cesaroni, Marta Cirach Pradas, Josef Cyrys, John Douros, Marloes Eeftens, Francesco Forastiere, Bertil Forsberg, Kateryna Fuks, Ulrike Gehring, Alexandros Gryparis, John Gulliver, Anna L. Hansell, Barbara Hoffmann, Christer Johansson, Sander Jonkers, Leena Kangas, Klea Katsouyanni, Nino Kunzli, Timo Lanki, Michael Memmesheimer, Nicolas Moussiopoulos, Lars Modig, Goran Pershagen, Nicole Probst-Hensch, Christian Schindler, Tamara Schikowski, Dorothee Sugiri, Oriol Teixido, Ming Yi Tsai, Tarja Yli-Tuomi, Bert Brunekreef, Gerard Hoek, and Tom Bellander. Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies. Environment International, 73, 2014. [31] Steve Hankey and Julian D. Marshall. Land use regression models of on-road particulate air pollution (particle number, black carbon, pm2.5, particle size) using mobile monitoring. Environmental Science and Technology, 49, 2015. [32] Jianming Liang, Jianhua Gong, Jun Sun, Jieping Zhou, Wenhang Li, Yi Li, Jin Liu, and Shen Shen. Automatic sky view factor estimation from street view photographs - a big data approach. Remote Sensing, 9, 2017. [33] Xiansheng Liu, Hadiatullah Hadiatullah, Xun Zhang, L. Drew Hill, Andrew H.A. White, Jurgen Schnelle-Kreis, Jan Bendl, Gert Jakobi, Brigitte Schloter-Hai, and Ralf Zimmermann. Analysis of mobile monitoring data from the microaeth ma200 for measuring changes in black carbon on the roadside in augsburg. Atmospheric Measurement Techniques, 14, 2021. [34] Xiansheng Liu, Xun Zhang, Jurgen Schnelle-Kreis, Gert Jakobi, Xin Cao, Josef Cyrys, Lanyan Yang, Brigitte Schloter-Hai, Gulcin Abbaszade, Jurgen Orasche, Mohamed Khedr, Michal Kowalski, Marcus Hank, and Ralf Zimmermann. Spatiotemporal characteristics and driving factors of black carbon in augsburg, germany: Combination of mobile monitoring and street view images. Environmental Science and Technology, 55, 2021. [35] Xiaojiang Li, Chuanrong Zhang, Weidong Li, Robert Ricard, Qingyan Meng, and Weixing Zhang. Assessing street-level urban greenery using google street view and a modified green view index. Urban Forestry and Urban Greening, 14, 2015. [36] Philip Stubbings, Joe Peskett, Francisco Rowe, and Dani Arribas-Bel. A hierarchical urban forest index using street-level imagery and deep learning. Remote Sensing, 11, 2019. [37] Ian Seiferling, Nikhil Naik, Carlo Ratti, and Raphael Proulx. Green streets - quantifying and mapping urban trees with street-level imagery and computer vision. Landscape and Urban Planning, 165, 2017. [38] Meng Qi and Steve Hankey. Using street view imagery to predict street-level particulate air pollution. Environmental Science and Technology, 55, 2021. [39] Jun Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-toimage translation using cycle-consistent adversarial networks. Proceedings of the IEEE International Conference on Computer Vision, 2017-October, 2017. [40] Liang Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 2018. [41] Arman Ganji, Laura Minet, Scott Weichenthal, and Marianne Hatzopoulou. Predicting traffic-related air pollution using feature extraction from built environment images. Environmental Science and Technology, 54, 2020. [42] Amanda Rzotkiewicz, Amber L. Pearson, Benjamin V. Dougherty, Ashton Shortridge, and Nick Wilson. Systematic review of the use of google street view in health research: Major themes, strengths, weaknesses and possibilities for future research. Health and Place, 52, 2018. [43] Xiansheng Liu, Hadiatullah Hadiatullah, Xun Zhang, Jurgen Schnelle-Kreis, Xiaohu Zhang, Xiuxiu Lin, Xin Cao, and Ralf Zimmermann. Combined land-use and street view image model for estimating black carbon concentrations in urban areas. Atmospheric Environment, 265, 2021. [44] Douglas Aaron and Costas Tsouris. Separation of co2 from flue gas: A review. Separation Science and Technology, 40, 2005. [45] Colleen E. Reid, Michael Jerrett, Maya L. Petersen, Gabriele G. Pfister, Philip E. Morefield, Ira B. Tager, Sean M. Raffuse, and John R. Balmes. Spatiotemporal prediction of fine particulate matter during the 2008 northern california wildfires using machine learning. Environmental Science and Technology, 49, 2015. [46] Qian Di, Itai Kloog, Petros Koutrakis, Alexei Lyapustin, Yujie Wang, and Joel Schwartz. Assessing pm2.5 exposures with high spatiotemporal resolution across the continental united states. Environmental Science and Technology, 50, 2016. [47] Xuefei Hu, Jessica H. Belle, Xia Meng, Avani Wildani, Lance A. Waller, Matthew J. Strickland, and Yang Liu. Estimating pm2.5 concentrations in the conterminous united states using the random forest approach. Environmental Science and Technology, 51, 2017. [48] Cole Brokamp, Roman Jandarov, M. B. Rao, Grace LeMasters, and Patrick Ryan. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 2017. [49] Cole Brokamp, Roman Jandarov, Monir Hossain, and Patrick Ryan. Predicting daily urban fine particulate matter concentrations using a random forest model. Environmental Science and Technology, 52, 2018. [50] Leo Breiman. Bagging predictors. Machine Learning, 24, 1996. [51] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 1998. [52] Jih-Hsun Yeh. 對移動污染源及固定污染源的排放強度進行估計: 以實際道路車隊及工業區料堆為例. 臺灣大學環境工程學研究所學位論文, pages 1-100, 1 2021. [53] Sheila Tripathy, Brett J. Tunno, Drew R. Michanowicz, Ellen Kinnee, Jessie L.C.Shmool, Sara Gillooly, and Jane E. Clougherty. Hybrid land use regression modelingfor estimating spatio-temporal exposures to pm 2.5 , bc, and metal components acrossa metropolitan area of complex terrain and industrial sources. Science of the TotalEnvironment, 673, 2019. [54] Marshall Lloyd, Ellison Carter, Florencio Guzman Diaz, Kento Taro MagaraGomez, Kris Y. Hong, Jill Baumgartner, Victor M. Herrera G, and Scott Weichenthal. Predicting within-city spatial variations in outdoor ultrafine particle and blackcarbon concentrations in bucaramanga, colombia: A hybrid approach using opensource geographic data and digital images. Environmental Science and Technology,55, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86300 | - |
| dc.description.abstract | 空氣污染暴露對人體健康有害。固定測站監測提供了高品質的空氣污染的測量結果,但在估計旅行者在道路上污染暴露的空間變異性時受到限制。此外,它可能導致街道層級的空間變化表徵不佳。因此,移動監測已被廣泛用於收集及時的時空空氣污染測量值。 土地利用回歸(LUR)是預測空氣污染物濃度的典型模型。 LUR模型通常利用來自固定監測站點的固定測量值。另一方面,許多研究開始使用移動監測。影像數據和LUR可以組成包含固定和移動測量的混合模型。圖像分割技術常用於街景圖像數據處理。然而,大多數深度學習方法都需要標記良好的數據來進行模型訓練。此外,處理數據需要大量的人工工作。 本研究提出了一種用於未標記的車載攝影機影像的遷移學習方法和一種利用deeplabV2模型進行圖像分割的圖像特徵提取方法。我們沿著台中台灣大道進行了移動監測,以開發一個混合模型來預測二氧化碳(CO2)、氮氧化物(NOx)、黑碳(BC)和粒子數(PN)濃度。我們模型的5折交叉驗證R2分別為CO2、NOx、BC和PN的0.79、0.88、0.61和0.63。當標記良好的數據難以獲取時,這種遷移學習方法可能會有所幫助。此外,這項工作使混合模型能夠適應不同的車載攝像頭場景,並可用於估計道路污染暴露。 | zh_TW |
| dc.description.abstract | Air pollution exposure is harmful to human health. Stationary monitoring of air pollution provides high-quality measurements while limited when estimating spatial variability of on-road exposure of travelers. In addition, it may lead to poor characterization of spatial variation at the street level. Therefore, mobile monitoring has been widely adopted for collecting real-time air pollution measurements. The Land Use Regression (LUR) is a typical model for predicting air pollutant concentrations. LUR models usually utilize stationary measurements from fixed monitoring sites. On the other hand, numerous studies took measures from mobile monitoring sources. Image data and the LUR can form a hybrid model with stationary and mobile measurements. The image segmentation technique is often used for street view image data processing. However, most deep learning methods require well-labeled data for model training. In addition, it needs a lot of human work to process data. This study presents a transfer learning approach for unlabeled onboard camera images and an image feature extraction approach utilizing image segmentation with the deeplabV2 model. We conducted mobile monitoring along Taiwan Avenue, Taichung, to develop a hybrid model to predict carbon dioxide (CO2), nitrogen oxides (NOx), black carbon (BC), and particle number (PN) concentration. The 5-fold cross-validation R2 for our model was 0.79, 0.88, 0.61, and 0.63 for the CO2, NOx, BC, and PN, respectively. This transfer learning method may be helpful when well-labeled data is difficult to acquire. Furthermore, this work enabled the hybrid model to adapt to different onboard camera scenarios and can be applied to estimate the on-road pollution exposure. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:47:46Z (GMT). No. of bitstreams: 1 U0001-2508202220232000.pdf: 22008374 bytes, checksum: dfe0e8ba451b795552fc1b8871550249 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables x Chapter 1 INTRODUCTION 1 1.1 Stationary and mobile monitoring 1 1.2 Emerging technologies 2 1.3 Objective 3 Chapter 2 LITERATURE REVIEW 4 2.1 Monitoring 4 2.2 Land use regression 4 2.3 Street view imagery 5 2.4 Research gap 6 Chapter 3 METHODOLOGY 9 3.1 Transfer learning with the CycleGAN model 9 3.2 Predictor variables extractor 11 3.3 Random Forest Regression model 12 Chapter 4 RESULTS 14 4.1 Mobile monitoring data 14 4.2 Transfer learning results 18 4.3 Random sample method 18 4.4 One-day method 29 Chapter 5 CONCLUSION 33 5.1 Flexibility of the image segmentation model 33 5.2 Spatiotemporal variability 34 5.3 The settings of land use random forest 34 References 36 Appendix A Regression results 46 Appendix B Land use 56 | - |
| dc.language.iso | en | - |
| dc.subject | 土地利用 | zh_TW |
| dc.subject | 空氣汙染 | zh_TW |
| dc.subject | 汙染濃度 | zh_TW |
| dc.subject | 轉移學習 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | image segmentation | en |
| dc.subject | land use | en |
| dc.subject | air pollution | en |
| dc.subject | transfer learning | en |
| dc.subject | pollutant concentrations | en |
| dc.title | 基於土地利用與道路影像轉移學習之時空汙染濃度估計 | zh_TW |
| dc.title | Estimating Spatiotemporal Variations in Pollutant Concentration: Onboard Camera Image Transfer learning and Land Use Regression | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭大智;張瀞之 | zh_TW |
| dc.contributor.oralexamcommittee | Ta-Chih Hsiao;Ching Chih Chang | en |
| dc.subject.keyword | 轉移學習,土地利用,影像分割,空氣汙染,汙染濃度, | zh_TW |
| dc.subject.keyword | transfer learning,land use,image segmentation,air pollution,pollutant concentrations, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202202826 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-08-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2024-08-30 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-110-2.pdf | 21.49 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
