Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86289
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor施上粟
dc.contributor.authorYu-Hsuan Lien
dc.contributor.author李于萱zh_TW
dc.date.accessioned2023-03-19T23:47:08Z-
dc.date.copyright2022-08-30
dc.date.issued2022
dc.date.submitted2022-08-29
dc.identifier.citation1. Al-Asadi, S. A., Al Hawash, A. B., Alkhlifa, N. H. A., & Ghalib, H. B. (2019). Factors affecting the levels of toxic metals in the Shatt Al-Arab River, Southern Iraq. Earth Systems and Environment, 3(2), 313-325. 2. Amoudry, L. O., & Souza, A. J. (2011). Deterministic coastal morphological and sediment transport modeling: A review and discussion. Reviews of Geophysics, 49(2). 3. Arambourou, H., Beisel, J. N., Branchu, P., & Debat, V. (2014). Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults of Chironomus riparius. Science of the Total Environment, 484, 92-101. 4. Ariathurai, R. and Krone, R.B. (1976) Finite element model for cohesive sediment transport. Journal of Hydraulic Division, ASCE, 102, 323–338. 5. ASTM International (2003) D1889-00 Standard test method for turbidity of water. In: ASTM International, Annual Book of ASTM standards, Water and Environmental Technology, V. 11.01, West Conshohocken, Pennsylvania, USA 6. Bae, S., & Seo, D. (2018). Analysis and modeling of algal blooms in the Nakdong River, Korea. Ecological Modelling, 372, 53-63. 7. Batiuk, R. A., R. Orth, K. Moore, J. C. Stevenson, W. Dennison, L. Staver, V. Carter, N. B. Rybicki, R. Hickman, S. Kollar and S. Bieber. 1992. Chesapeake Bay submerged aquatic vegetation water quality and habitat-based requirements and restoration targets: A technical synthesis. CBP/TRS 83/92. U.S. EPA Chesapeake Bay Program, Annapolis, Maryland. 8. Berry, W., Rubinstein, N., Melzian, B., & Hill, B. (2003). The biological effects of suspended and bedded sediment (SABS) in aquatic systems: a review. United States Environmental Protection Agency, Duluth, 32(1), 54-55. 9. Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water research, 42(12), 2849-2861. 10. Bolin, B., & Rodhe, H. (1973). A note on the concepts of age distribution and transit time in natural reservoirs. Tellus, 25(1), 58-62. 11. Burban, P. Y., Lick, W., & Lick, J. (1989). The flocculation of fine‐grained sediments in estuarine waters. Journal of Geophysical Research: Oceans, 94(C6), 8323-8330. 12. Chatterjee, M. V. S. F. E., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., ... & Bhattacharya, B. D. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33(3), 346-356. 13. Chen, R. S., & Tsai, C. M. (2017). Development of an evaluation system for sustaining reservoir functions—a case study of Shiwen Reservoir in Taiwan. Sustainability, 9(8), 1387. 14. Chen, W. B., Liu, W. C., Hsu, M. H., & Hwang, C. C. (2015). Modeling investigation of suspended sediment transport in a tidal estuary using a three-dimensional model. Applied Mathematical Modelling, 39(9), 2570-2586. 15. Cho, E., Arhonditsis, G. B., Khim, J., Chung, S., & Heo, T. Y. (2016). Modeling metal-sediment interaction processes: parameter sensitivity assessment and uncertainty analysis. Environmental Modelling & Software, 80, 159-174. 16. Cucco, A., & Umgiesser, G. (2006). Modeling the Venice Lagoon residence time. Ecological modelling, 193(1-2), 34-51. 17. Danckwerts, P. V. (1953). Continuous flow systems: distribution of residence times. Chemical engineering science, 2(1), 1-13. 18. Davies‐Colley, R. J., & Smith, D. G. (2001). Turbidity suspeni) ed sediment, and water clarity: a review 1. JAWRA Journal of the American Water Resources Association, 37(5), 1085-1101. 19. de la Fuente, A. (2014). Heat and dissolved oxygen exchanges between the sediment and water column in a shallow salty lagoon. Journal of Geophysical Research: Biogeosciences, 119(4), 596-613. 20. DSI LLC. (2020). EFDC+ Theory, Version 10.2. Published by DSI LLC, Edmonds WA. 21. Dyer, K. R. (1973). Estuaries: a physical introduction 22. Elçi, Ş., Work, P. A., & Hayter, E. J. (2007). Influence of stratification and shoreline erosion on reservoir sedimentation patterns. Journal of Hydraulic Engineering. 23. Etemad-Shahidi, A., Shahkolahi, A., & Liu, W. C. (2010). Modeling of hydrodynamics and cohesive sediment processes in an estuarine system: Study case in Danshui river. Environmental modeling & assessment, 15(4), 261-271. 24. Feizabadi, S., Rafati, Y., Ghodsian, M., Akbar Salehi Neyshabouri, A., Abdolahpour, M., & Mazyak, A. R. (2022). Potential sea-level rise effects on the hydrodynamics and transport processes in Hudson–Raritan Estuary, NY–NJ. Ocean Dynamics, 72(6), 421-442. 25. Fuente, A. D. L., & Ninóo, Y. (2010). Temporal and spatial features of the thermohydrodynamics of shallow salty lagoons in northern Chile. Limnology and oceanography, 55(1), 279-288. 26. Garcia, M. (Ed.). (2008, May). Sedimentation engineering: processes, measurements, modeling, and practice. American Society of Civil Engineers. 27. Gibbs, R. J. (1985). Estuarine flocs: their size, settling velocity and density. Journal of Geophysical Research: Oceans, 90(C2), 3249-3251. 28. Gibson, R. N., Barnes, M., & Atkinson, R. J. A. (2002). Impact of changes in flow of freshwater on estuarine and open coastal habitats and the associated organisms. Oceanography and Marine Biology an Annual Review, 40, 233. 29. Grasso, F., & Le Hir, P. (2019). Influence of morphological changes on suspended sediment dynamics in a macrotidal estuary: diachronic analysis in the Seine Estuary (France) from 1960 to 2010. Ocean Dynamics, 69(1), 83-100. 30. Hamrick, J. M. (1992). A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects. 31. Hesse, L. W., & Newcomb, B. A. (1982). Effects of flushing Spencer Hydro on water quality, fish, and insect fauna in the Niobrara River, Nebraska. North American Journal of Fisheries Management, 2(1), 45-52. 32. Holland, J. F., Martin, J. F., Granata, T., Bouchard, V., Quigley, M., & Brown, L. (2004). Effects of wetland depth and flow rate on residence time distribution characteristics. Ecological Engineering, 23(3), 189-203. 33. Hong, B., & Shen, J. (2012). Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 104, 33-45. 34. Hong, B., Liu, Z., Shen, J., Wu, H., Gong, W., Xu, H., & Wang, D. (2020). Potential physical impacts of sea-level rise on the Pearl River Estuary, China. Journal of Marine Systems, 201, 103245. 35. Hsieh, T. C., Ding, Y., Yeh, K. C., & Jhong, R. K. (2020). Investigation of morphological changes in the Tamsui River estuary using an integrated coastal and estuarine processes model. Water, 12(4), 1084. 36. Hsieh, T. C., Ding, Y., Yeh, K. C., & Jhong, R. K. (2022). Numerical Investigation of Sediment Flushing and Morphological Changes in Tamsui River Estuary through Monsoons and Typhoons. Water, 14(11), 1802. 37. Ioannidou, V. G., & Pearson, J. M. (2019). The effects of flow rate variation and vegetation ageing on the longitudinal mixing and residence time distribution (RTD) in a full-scale constructed wetland. Ecological Engineering, 138, 248-263. 38. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32, doi:10.1017/9781009157896.001. 39. Ji, Z. G. (2017). Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. John Wiley & Sons. 40. Ji, Z. G., Hamrick, J. H., & Pagenkopf, J. (2002). Sediment and metals modeling in shallow river. Journal of Environmental Engineering, 128(2), 105-119. 41. Jones, J. I., Murphy, J. F., Collins, A. L., Sear, D. A., Naden, P. S., & Armitage, P. D. (2012). The impact of fine sediment on macro‐invertebrates. River research and applications, 28(8), 1055-1071. 42. Julien, P. Y. (2018). River mechanics. Cambridge University Press. 43. Kadlec, R. H. (1994). Detention and mixing in free water wetlands. Ecological Engineering, 3(4), 345-380. 44. Kaštelan-Macan, M., & Petrovic, M. (1995). Competitive sorption of phosphate and marine humic substances on suspended particulate matter. Water Science and Technology, 32(9-10), 349-355. 45. Kirk, J. T. (1994). Light and photosynthesis in aquatic ecosystems. Cambridge university press. 46. Kjelland, M. E., Woodley, C. M., Swannack, T. M., & Smith, D. L. (2015). A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environment Systems and Decisions, 35(3), 334-350. 47. Lee, F. Z., Lai, J. S., & Sumi, T. (2022). Reservoir Sediment Management and Downstream River Impacts for Sustainable Water Resources—Case Study of Shihmen Reservoir. Water, 14(3), 479. 48. Liu, K. K., Kao, S. J., Wen, L. S., & Chen, K. L. (2007). Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Science of the Total Environment, 382(1), 103-120. 49. Liu, W. C., Chen, W. B., & Chang, Y. P. (2012). Modeling the transport and distribution of lead in tidal Keelung River estuary. Environmental Earth Sciences, 65(1), 39-47. 50. Liu, W. C., Chen, W. B., & Kuo, J. T. (2008). Modeling residence time response to freshwater discharge in a mesotidal estuary, Taiwan. Journal of Marine Systems, 74(1-2), 295-314. 51. Liu, W. C., Hsu, M. H., & Kuo, A. Y. (2002). Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Marine Pollution Bulletin, 44(10), 1076-1088. 52. Liu, X., & Huang, W. (2009). Modeling sediment resuspension and transport induced by storm wind in Apalachicola Bay, USA. Environmental Modelling & Software, 24(11), 1302-1313. 53. Manasrah, R., Raheed, M., & Badran, M. I. (2006). Relationships between water temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba, Red Sea. Oceanologia, 48(2). 54. Mehta, A. J. (1986). Characterization of cohesive sediment properties and transport processes in estuaries. In Estuarine cohesive sediment dynamics (pp. 290-325). Springer, New York, NY. 55. Mehta, A. J., & Hwang, K. N. (1989). Fine sediment erodibility in Lake Okeechobee, Florida. 56. Mehta, A. J., Hayter, E. J., Parker, W. R., Krone, R. B., & Teeter, A. M. (1989). Cohesive sediment transport. I: Process description. Journal of Hydraulic Engineering, 115(8), 1076-1093. 57. Merten, G. H., Capel, P. D., & Minella, J. P. (2014). Effects of suspended sediment concentration and grain size on three optical turbidity sensors. Journal of Soils and Sediments, 14(7), 1235-1241. 58. Miner, J. G., & Stein, R. A. (1996). Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative prey. Transactions of the American Fisheries Society, 125(1), 97-103. 59. Mitra, A., & Kumar, V. S. (2021). A numerical investigation on the tide-induced residence time and its association with the suspended sediment concentration in Gulf of Khambhat, northern Arabian Sea. Marine Pollution Bulletin, 163, 111947. 60. Muralidharan, J., Ganesh Kumar, B., & Kunte, P. D. (2015). Sediment transport study along Gulf of Kachchh-a numerical and geospatial approach. Int J Appl Eng Res, 10(55), 4291-6. 61. Novotny, V., & Chesters, G. (1989). Delivery of sediment and pollutants from nonpoint sources: a water quality perspective. Journal of Soil and Water Conservation, 44(6), 568-576. 62. Officer, C.B., 1976. Physical Oceanography of Estuaries (and Associated Coastal Waters). Wiley, New York, 465 pp. 63. Ogata, T., Ishimaru, T., & Kodama, M. (1987). Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis. Marine Biology, 95(2), 217-220. 64. Pak, G., Mallari, K. J. B., Baek, J., Kim, D., Kim, H., Jung, M., ... & Yoon, J. (2016). Modelling of suspended sediment in a weir reach using EFDC model. Water Science and Technology, 73(7), 1583-1590. 65. Pan, C., & Shangguan, Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331(1-2), 178-185. 66. Parsley, M. J., Popoff, N. D., & Romine, J. G. (2011). Short-term response of subadult white sturgeon to hopper dredge disposal operations. North American Journal of Fisheries Management, 31(1), 1-11. 67. Persson, J., Somes, N. L. G., & Wong, T. H. F. (1999). Hydraulics efficiency of constructed wetlands and ponds. Water science and technology, 40(3), 291-300. 68. Ranåker, L., Jönsson, M., Nilsson, P. A., & Brönmark, C. (2012). Effects of brown and turbid water on piscivore–prey fish interactions along a visibility gradient. Freshwater biology, 57(9), 1761-1768. 69. Ritter, A., & Munoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45. 70. Robertson, M. J., Scruton, D. A., & Clarke, K. D. (2007). Seasonal effects of suspended sediment on the behavior of juvenile Atlantic salmon. Transactions of the American Fisheries Society, 136(3), 822-828. 71. Sam, S. Y., & Weiming, W. U. (2004). River sedimentation and morphology modeling–the state of the art and future development. In Proceeding of the Ninth International Symposium on River Sedimentation (pp. 18-21). 72. Shih, S. S., & Wang, H. C. (2020). Flow uniformity metrics for quantifying the hydraulic and treatment performance of constructed wetlands. Ecological Engineering, 155, 105942. 73. Smith, D. G., Croker, G. F., & McFarlane, K. A. Y. (1995). Human perception of water appearance: 1. Clarity and colour for bathing and aesthetics. New Zealand journal of marine and freshwater research, 29(1), 29-43. 74. Takeoka, H. (1984). Fundamental concepts of exchange and transport time scales in a coastal sea. Continental Shelf Research, 3(3), 311-326. 75. Tetra Tech (2002) Theoretical and Computational Aspects of Sediment and Contaminant Transport in the EFDC Model. Technical Report to USEPA, Tetra Tech, Inc., Fairfax, VA. 76. van de Kreeke, J. (1983). Residence time: application to small boat basins. Journal of waterway, port, coastal, and ocean engineering, 109(4), 416-428. 77. Vogel, J. L., & Beauchamp, D. A. (1999). Effects of light, prey size, and turbidity on reaction distances of lake trout (Salvelinus namaycush) to salmonid prey. Canadian Journal of Fisheries and Aquatic Sciences, 56(7), 1293-1297. 78. Wang, H. W., Kondolf, M., Tullos, D., & Kuo, W. C. (2018). Sediment management in Taiwan’s reservoirs and barriers to implementation. Water, 10(8), 1034. 79. Wenger, A. S., Johansen, J. L., & Jones, G. P. (2012). Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. Journal of Experimental Marine Biology and Ecology, 428, 43-48. 80. Wilkens, J. L., Katzenmeyer, A. W., Hahn, N. M., Hoover, J. J., & Suedel, B. C. (2015). Laboratory test of suspended sediment effects on short‐term survival and swimming performance of juvenile Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Mitchill, 1815). Journal of Applied Ichthyology, 31(6), 984-990. 81. Yang, Y., Chen, X., Li, Y., Xiong, M., & Shen, Z. (2015). Modeling the effects of extreme drought on pollutant transport processes in the Yangtze River estuary. JAWRA Journal of the American Water Resources Association, 51(3), 624-636. 82. Yuan, D., Lin, B., & Falconer, R. A. (2007). A modelling study of residence time in a macro-tidal estuary. Estuarine, Coastal and Shelf Science, 71(3-4), 401-411. 83. Ziegler, C.K. and Nesbitt, B. (1995) Long-term simulation of fine-grained sediment transport in large reservoir. Journal of Hydraulic Engineering, 121, 773–781. 84. Zimmerman, J. T. F. (1976). Mixing and flushing of tidal embayments in the western Dutch Wadden Sea part I: Distribution of salinity and calculation of mixing time scales. Netherlands Journal of Sea Research, 10(2), 149-191 85. 李俊賢,2006,以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物,國立中央大學水文科學研究所碩士論文。 86. 林幸助、施上粟經濟部水利署北區水資源局,2015,石門水庫排洪減淤操作對下游河道生態影響及改善方案研究,經濟部水利署北區水資源局委託研究。 87. 林秉煜,2015,民國 104 年颱風調查報告-第 21 號杜鵑(DUJUAN)颱風(1521),中央氣象局氣象預報中心。 88. 施上粟、俞維昇、黃國文經濟部水利署第十河川局,2008,淡水河系河底淤泥分佈探討及再利用可行性評估,經濟部水利署第十河川局委託研究。 89. 張志新、王俞婷、傅鏸漩、林又青、張駿暉、劉哲欣,2015,2015年蘇迪勒颱風災害調查彙整報告。新北市:國家災害防救科技中心。 90. 章書瑋,2006,淡水河重金屬傳輸模式之發展,國立中央大學水文科學研究所碩士論文。 91. 陳韻如、林修立、陳正達、陳永明,2016,氣候變遷下不同暖化情境差異比較。國家災害防救科技中心災害防救電子報電子報,第132期。 92. 經濟部水利署北區水資源局,2006,石門水庫泥砂運移模擬及排淤方案之研究(2/2)。 93. 羅雅尹,2016,民國104年颱風調查報告-第13號蘇迪勒(Soudelor)颱風(1513)。氣象學報第53卷第1期,61-84。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86289-
dc.description.abstract河口潮間帶是河川與海洋之間物質、能量交換的重要區域,具有高生產力的河口海岸生態系統,因同時受到河流流量及潮汐相互作用而形成複雜流場,並影響懸浮泥砂的傳輸行為。淡水河系是國內最大的河口生態系統之一,其上游包含三大支流及兩座水庫,為了緩解水庫淤積問題,颱洪期間水利單位透過空庫排砂、異重流排砂等排洪排砂操作方式,減緩水庫淤積速度以延長水庫使用壽命,但此舉勢必排放大量庫區泥砂進入下游河道,對水體濃濁度及生態系統有一定的影響,但相關研究仍相對較少。為了解水庫有排砂之颱風事件發生及過後,淡水河流域懸浮泥砂濃度變化以及潮汐對懸浮泥砂傳遞之作用,本研究使用EFDC模式的水動力和泥砂傳輸模式進行模擬,並收集2015年蘇迪勒及杜鵑颱風期間水理、泥砂數據,作為模式輸入邊界條件及模式率定和驗證之用。 以「脈衝排放」方式計算蘇迪勒颱風的平均停留時間(tm),結果發現因上游水庫泥砂排放時間不同導致tm有明顯的差異,河口TE02斷面的tm平均約5.3-36小時,此結果顯示停留時間與排放時的河川流量與潮汐流量綜合結果有關,在回復潮汐作用後,因新店溪流量、泥砂量影響使tm仍短暫,因此推測颱風過後河口懸浮泥砂濃度居高不下應受到上游泥砂量持續輸入所致。另以「連續排放」方式,評估各河段受到颱風期間產生高濃度泥砂的影響,不同斷面估計現況影響河口濃度泥砂的綜合性平均停留時間(tcm)約3天7小時至3天15小時、總停留時間(Tb)約15天至18天左右,顯示颱風後淡水河口濃度高於平時許久。比較現況和情境模擬結果發現(Δ=「現況」-「情境」):(1)「TDL情境」,Δtcm = 0~17.70小時、ΔTb除TE02外無明顯差異,顯示潮汐效應主要的影響為提高泥砂濃度而非延長總停留時間,然漲潮期間出海口泥砂如無法傳遞回河口,淡水河下游河道受高濃度泥砂影響的程度將會降低許多;(2)「Tri情境」,Δtcm =3.02~7.64小時、ΔTb=0.5小時~1天3小時(HHB-GDB),表示新店溪集水區崩塌產生大量泥砂,導致下游河道泥砂停留時間延長;(3)「BdE情境」,Δtcm =0.63~3.13小時、ΔTb=1天2小時~2天6小時(HHB-GDB),研究顯示支流量較大產生底泥沖刷,也易導致河口受影響時間變長;(4)「SLR情境」, Δtcm=1.13~3.41小時、ΔTb=-0.50~15.50小時,此情境因海平面上升導致河口水體積增加而稀釋濃度,及因流速減緩而增加沉積,反而使整體受影響的時間縮短;(5)「FRI情境」,Δtcm=-0.48~-3.84小時、ΔTb=-4天11小時~-8天6小時,此情境結果顯示上游支流量增加導致入流泥砂通量變大、沖刷及挾砂能力提升,整體受影響時間變長。zh_TW
dc.description.abstractReservoir sedimentation effects on water resources, flood prevention, and environmental management problems are recognized to be vital worldwide. To mitigate the sediment accumulation in reservoirs, the Water Resources Agency in Taiwan attempts to enhance sediment scours by hydraulic flushing and density current venting during typhoon events. The effluent sediment from reservoirs usually results in higher suspended sediment concentrations (SSC) downstream and impacts the aquatic environment. Unfortunately, there are few pieces of research discussing this issue. The estuary is a high-productivity ecosystem and a critical zone that exchanges sediment and nutrients between rivers and the ocean. The complicated flow field of the interaction among tidal and river currents dominates suspended sediment transport behavior. In order to understand suspended sediment transport after a typhoon event with sediment flushing from the Shihmen reservoir in northern Taiwan, the EFDC model simulations were conducted in the Tanshuei river estuary. The model was calibrated and verified by comparing the modeling results with the field investigation of hydraulic and sediment data during typhoon Soudelor and typhoon Dujuan in 2015. The mean residence time (tm) was calculated using the pulsed input method during the Soudelor typhoon period. We found apparent differences in the tm due to the different discharge times of the reservoir sediments. The tm of the estuary TE02 section was about 5.3-36 hours, indicating that the mean residence time is related to the comprehensive results of river flow and tidal currents at the sediment effluent time. In addition, the tm was short because the river flow and sediment of the Hsindian Creek continued to influence after the typhoon. We concluded that the estuary remained at a high SSC because of the continuous tributary sediment inputs. Then, we evaluated the effect of high SSC at different sections during the typhoon in terms of continuous sediment discharge conditions. The findings showed that the comprehensive mean residence times (tcm) and the total residence times (Tb) were from 3d 7hr to 3d 15hr and from 15d to 18d, respectively. The differences in the current situation and each scenario revealed (Δ=current – scenario): (i) In the TDL scenario, Δtcm=0~17.70 hr, and there was no significant difference in ΔTb excepting for TE02. We found that the tidal effect mainly increased SSC rather than prolonging the total residence time. If no sediment was capable of moving upstream with the flood tide, the impact of sediments could be much lower. (ii) In the Tri scenario, Δtcm =3.02~7.64 hr and ΔTb=0.5h ~1d 3h (HHB-GDB). The result indicated that the residence times were longer owing to the collapse of the Hsintien Creek Watershed. (iii) In the BdE scenario, Δtcm =0.63~3.13 hr and ΔTb=1d 2h~2d 6h (HHB-GDB). The result showed that sediments from bed erosion could have much influence on the estuary region. (iv) In the SLR scenario, Δtcm =1.13~3.41 hr and ΔTb=-0.50~15.50 hr. The residence times were shorter along with dilution and sediment deposition due to the rising sea-level effect. (v) In the FRI scenario, Δtcm =-0.48~-3.84 hr and ΔTb=-4d 11hr~8d 6hr. Since upstream sediment fluxes were larger and the capability of flushing and entraining enhanced, the residence times were found to be longer in the increasing upstream flow condition.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:47:08Z (GMT). No. of bitstreams: 1
U0001-2708202201352000.pdf: 18605182 bytes, checksum: 02119b629c36a42e485bf13e63a58333 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究內容 2 1.3.1 論文架構 2 1.3.2 研究流程 3 第二章 文獻回顧 5 2.1 河口懸浮泥砂 5 2.2 懸浮泥砂對水質之影響 6 2.3 懸浮泥砂對水中生物之影響 8 2.4 淡水河系模式評估懸浮泥砂案例 9 2.5 停留時間計算方法 11 第三章 研究方法 14 3.1 環境流體動力學模型(Environmental Fluid Dynamic Code,EFDC) 14 3.2 水動力模式 14 3.2.1 水平和垂直網格系統 15 3.2.2 基本水動力方程式 16 3.2.3 垂直紊流閉合公式 19 3.3 泥砂傳輸模式 20 3.3.1 懸浮泥砂傳輸之控制方程式 21 3.3.2 凝聚性泥砂之沉降、沉積及侵蝕 22 3.4 停留時間指標 25 第四章 模式建立及驗證 29 4.1 研究地點與颱風事件 29 4.1.1 研究地點 29 4.1.2 颱風事件選擇 30 4.2 資料蒐集及整理 31 4.2.1 地形資料 32 4.2.2 水位、流量資料 32 4.2.3 水溫資料 37 4.2.4 懸浮泥砂濃度資料 38 4.2.5 懸浮泥砂與底床泥砂粒徑資料 41 4.3 EFDC模式建立 43 4.3.1 網格建立 45 4.3.2 初始條件與邊界條件 47 4.3.3 泥砂粒徑之簡化 51 4.4 模式驗證 52 4.4.1 水理模式 52 4.4.2 泥砂傳輸模式 60 第五章 現況及情境分析 66 5.1 現況分析 66 5.1.1 停留時間 66 5.1.2 不同時間下排砂之平均停留時間 80 5.2 情境分析 87 5.2.1 去除潮汐回流泥砂影響(Tidal effect, TDL) 87 5.2.2 去除支流泥砂影響(Tributary effect, Tri) 89 5.2.3 去除底床沖刷影響(Bed Erosion effect, BdE) 91 5.2.4 海平面上升(Sea Level Rise, SLR) 92 5.2.5 上游入流量增加(Flow Rate Increase, FRI) 93 5.3 小結 115 第六章 結論與建議 117 6.1 結論 117 6.2 建議 119 參考資料 121 附錄 131
dc.language.isozh-TW
dc.subject水庫排砂zh_TW
dc.subject潮汐作用zh_TW
dc.subject颱風事件zh_TW
dc.subject河口zh_TW
dc.subject懸浮泥砂zh_TW
dc.subject平均停留時間zh_TW
dc.subjectsuspended sedimenten
dc.subjecttidal actionen
dc.subjectreservoir sediment flushingen
dc.subjectestuaryen
dc.subjecttyphoon eventen
dc.subjectmean residence timeen
dc.title河口帶潮汐效應對水庫排砂之懸浮泥砂運移及濃度時空變化的影響zh_TW
dc.titleTidal pumping effects on the accumulation of suspended sediment in estuarine regions induced by upstream reservoir effluenten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游景雲,俞維昇
dc.subject.keyword河口,颱風事件,水庫排砂,潮汐作用,懸浮泥砂,平均停留時間,zh_TW
dc.subject.keywordestuary,typhoon event,reservoir sediment flushing,tidal action,suspended sediment,mean residence time,en
dc.relation.page144
dc.identifier.doi10.6342/NTU202202880
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2022-08-30-
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
U0001-2708202201352000.pdf18.17 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved