Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86274
Title: 任務順序於持續學習之影響
Task Order Effect in Continual Learning
Authors: Jia-Hong Qu
屈佳宏
Advisor: 陳銘憲(Ming-Syan Chen)
Keyword: 持續學習,終身學習,任務順序效應,領域增量式學習,數據分佈變化,
Continual Learning,Lifelong Learning,Task Order Effect,Domain Incremental Learning,Data Distribution Shift,
Publication Year : 2022
Degree: 碩士
Abstract: 在持續學習的文獻中,由於非平穩的數據分佈變化,大多數研究致力於克服災難性遺忘的問題,這對於人工神經網絡而言是個嚴重問題。然而,大多數的研究主要致力在持續學習「演算法」的部分,而任務順序之於機器學習模型的影響卻鮮少受到關注。在這篇論文中,我們研究了持續學習中的任務順序效應,並發現任務順序的選擇可能會影響最終的模型性能。因此,我們設計了一個名為啟發式任務選擇 的框架,它可以加入現有算法中,並在漸近多項式的時間內有效地選擇下一個任務。此外,我們利用幾種啟發式策略作為我們的選擇標準,並顯示這種基於特徵空間中的估計方法能作為有效性的指標,藉此可以很好地組織分類任務的任務順序。而為了評估具有大量任務的基準,我們利用符號檢定,一種可用於測量統計量的無母數或無分佈檢定,來評估我們所選擇的任務順序。實驗結果揭示了我們的方法在幾個基準上的有效性。
In continual learning literature, due to the non-stationary data distribution shifts, most research is dedicated to overcoming the catastrophic forgetting problem, which is a severe issue for artificial neural networks. Nevertheless, most works mainly focused on the algorithm part of continual learning, while the task order presented to machine learning models received little attention. In this work, we investigate the task order effect in continual learning and show that the choice of task order can impact the final performance. Therefore, we design the framework named Heuristic Task Selection, which can be plugged into existing algorithms and efficiently select the next task. Furthermore, we utilize several heuristics as our selection criterion and show that such feature-based metrics can be good indicators to well organize the task order for classification tasks. For evaluation, we exploit the sign test, a non-parametric or distribution-free test, which can be applied to measure the location of a statistic and help assess how performant the task order we select for the benchmarks with enormous tasks. The results reveal the efficacy of our method on several commonly used benchmarks.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86274
DOI: 10.6342/NTU202201598
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2022-08-30
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
U0001-2107202213043600.pdf5.02 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved