Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民(Li-Min Wang)
dc.contributor.authorCheng-Jui Chungen
dc.contributor.author鍾承叡zh_TW
dc.date.accessioned2023-03-19T23:45:31Z-
dc.date.copyright2022-08-31
dc.date.issued2022
dc.date.submitted2022-08-29
dc.identifier.citation1. Onnes, H.K., The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden, 1911. 12. 2. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Microscopic Theory of Superconductivity. Physical Review, 1957. 106(1): p. 162-164. 3. Bednorz, J.G. and K.A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B Condensed Matter, 1986. 64(2): p. 189-193. 4. Wu, M.K., et al., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 1987. 58(9): p. 908-910. 5. Kamihara, Y., et al., Iron-Based Layered Superconductor:  LaOFeP. Journal of the American Chemical Society, 2006. 128(31): p. 10012-10013. 6. Poole, C.P., et al., 13 - Energy gap and tunneling, in Superconductivity (Third Edition), C.P. Poole, et al., Editors. 2014, Elsevier: London. p. 501-576. 7. Hilsch, P., Zum Verhalten von Supraleitern im Kontakt mit Normalleitern. Zeitschrift für Physik, 1962. 167(5): p. 511-524. 8. Werthamer, N.R., Theory of the Superconducting Transition Temperature and Energy Gap Function of Superposed Metal Films. Physical Review, 1963. 132(6): p. 2440-2445. 9. Landau, I.L. and I.A. Parshin, Increase in the superconducting transition temperature of thin films as a result of a normal metal deposition on their surface. Physica B: Condensed Matter, 1994. 194-196: p. 2339-2340. 10. Bourgeois, O., A. Frydman, and R.C. Dynes, Inverse Proximity Effect in a Strongly Correlated Electron System. Physical Review Letters, 2002. 88(18). 11. Brun, C., T. Cren, and D. Roditchev, Review of 2D superconductivity: the ultimate case of epitaxial monolayers. Superconductor Science and Technology, 2016. 30(1): p. 013003. 12. Saito, Y., T. Nojima, and Y. Iwasa, Highly crystalline 2D superconductors. Nature Reviews Materials, 2017. 2(1): p. 16094. 13. Graybeal, J.M. and M.R. Beasley, Localization and interaction effects in ultrathin amorphous superconducting films. Physical Review B, 1984. 29(7): p. 4167-4169. 14. Orr, B.G., H.M. Jaeger, and A.M. Goldman, Local superconductivity in ultrathin Sn films. Physical Review B, 1985. 32(11): p. 7586-7589. 15. Jaeger, H.M., et al., Threshold for superconductivity in ultrathin amorphous gallium films. Physical Review B, 1986. 34(7): p. 4920-4923. 16. Jaeger, H.M., et al., Onset of superconductivity in ultrathin granular metal films. Physical Review B, 1989. 40(1): p. 182-196. 17. Haviland, D.B., Y. Liu, and A.M. Goldman, Onset of superconductivity in the two-dimensional limit. Physical Review Letters, 1989. 62(18): p. 2180-2183. 18. Hebard, A.F. and M.A. Paalanen, Magnetic-field-tuned superconductor-insulator transition in two-dimensional films. Physical Review Letters, 1990. 65(7): p. 927-930. 19. Liu, Y., et al., Insulator-to-superconductor transition in ultrathin films. Physical Review B, 1993. 47(10): p. 5931-5946. 20. Qin, Y., C.L. Vicente, and J. Yoon, Magnetically induced metallic phase in superconducting tantalum films. Physical Review B, 2006. 73(10). 21. Guo, Y., et al., Superconductivity Modulated by Quantum Size Effects. Science, 2004. 306(5703): p. 1915-1917. 22. Nishio, T., et al., Superconductivity of nanometer-size Pb islands studied by low-temperature scanning tunneling microscopy. Applied Physics Letters, 2006. 88(11): p. 113115. 23. Eom, D., et al., Persistent Superconductivity in Ultrathin Pb Films: A Scanning Tunneling Spectroscopy Study. Physical Review Letters, 2006. 96(2). 24. Qin, S., et al., Superconductivity at the Two-Dimensional Limit. Science, 2009. 324(5932): p. 1314-1317. 25. Zhang, T., et al., Superconductivity in one-atomic-layer metal films grown on Si(111). Nature Physics, 2010. 6(2): p. 104-108. 26. Reyren, N., et al., Superconducting Interfaces Between Insulating Oxides. Science, 2007. 317(5842): p. 1196-1199. 27. Gozar, A., et al., High-temperature interface superconductivity between metallic and insulating copper oxides. Nature, 2008. 455(7214): p. 782-785. 28. Wang, Q.-Y., et al., Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chinese Physics Letters, 2012. 29(3): p. 037402. 29. Chen, Z., et al., Electric field control of superconductivity at the LaAlO3/KTaO3(111) interface. Science, 2021. 372(6543): p. 721-724. 30. Staley, N.E., et al., Electric field effect on superconductivity in atomically thin flakes of NbSe2. Physical Review B, 2009. 80(18). 31. Jiang, D., et al., High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O8+x down to half-unit-cell thickness by protection with graphene. Nature Communications, 2014. 5(1): p. 5708. 32. Cao, Y., et al., Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Letters, 2015. 15(8): p. 4914-4921. 33. Xi, X., et al., Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotechnology, 2015. 10(9): p. 765-769. 34. Ueno, K., et al., Electric-field-induced superconductivity in an insulator. Nature Materials, 2008. 7(11): p. 855-858. 35. Ye, J.T., et al., Liquid-gated interface superconductivity on an atomically flat film. Nature Materials, 2010. 9(2): p. 125-128. 36. Bollinger, A.T., et al., Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature, 2011. 472(7344): p. 458-460. 37. Ye, J.T., et al., Superconducting Dome in a Gate-Tuned Band Insulator. Science, 2012. 338(6111): p. 1193-1196. 38. Costanzo, D., et al., Gate-induced superconductivity in atomically thin MoS2 crystals. Nature Nanotechnology, 2016. 11(4): p. 339-344. 39. Saito, Y., et al., Metallic ground state in an ion-gated two-dimensional superconductor. Science, 2015. 350(6259): p. 409-413. 40. Tsen, A.W., et al., Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Physics, 2016. 12(3): p. 208-212. 41. Shabalin, I., Ultra-High Temperature Materials. 2014. 42. Shamraĭ, V.F., et al., Magnetic properties and crystal structure of β-Ta. Crystallography Reports, 2004. 49(6): p. 930-935. 43. Read, M.H. and C. Altman, A new structure in tantalum thin films. Applied Physics Letters, 1965. 7(3): p. 51-52. 44. Webb, G.W., F. Marsiglio, and J.E. Hirsch, Superconductivity in the elements, alloys and simple compounds. Physica C: Superconductivity and its Applications, 2015. 514: p. 17-27. 45. Schwartz, N., et al., Temperature coefficient of resistance of beta-tantalum films and mixtures with b.c.c.-tantalum. Thin Solid Films, 1972. 14(2): p. 333-346. 46. Hoogeveen, R., et al., Texture and phase transformation of sputter-deposited metastable Ta films and TaCu multilayers. Thin Solid Films, 1996. 275(1): p. 203-206. 47. Gladczuk, L., et al., Tantalum films for protective coatings of steel. Thin Solid Films, 2004. 467(1): p. 150-157. 48. Alami, J., et al., Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering. Thin Solid Films, 2007. 515(7-8): p. 3434-3438. 49. Ren, H. and M. Sosnowski, Tantalum thin films deposited by ion assisted magnetron sputtering. Thin Solid Films, 2008. 516(8): p. 1898-1905. 50. Navid, A.A. and A.M. Hodge, Nanostructured alpha and beta tantalum formation—Relationship between plasma parameters and microstructure. Materials Science and Engineering: A, 2012. 536: p. 49-56. 51. Chen, W.-C., et al., A study of the phase transformation of low temperature deposited tantalum thin films using high power impulse magnetron sputtering and pulsed DC magnetron sputtering. Surface and Coatings Technology, 2022. 436. 52. Place, A.P.M., et al., New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nature Communications, 2021. 12(1). 53. Wang, C., et al., Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Information, 2022. 8(1). 54. Poole, C.P., et al., 2 - Phenomenon of superconductivity, in Superconductivity (Third Edition), C.P. Poole, et al., Editors. 2014, Elsevier: London. p. 33-85. 55. Tinkham, M., Introduction to superconductivity / Michael Tinkham. 2nd ed. 2004, Mineola, N.Y: Dover Publications. 56. Poole, C.P., et al., 9 - Type II superconductivity, in Superconductivity (Third Edition), C.P. Poole, et al., Editors. 2014, Elsevier: London. p. 355-424. 57. Gorter, C.J. and H. Casimir, On supraconductivity I. Physica, 1934. 1(1): p. 306-320. 58. Bardeen, J., Two-Fluid Model of Superconductivity. Physical Review Letters, 1958. 1(11): p. 399-400. 59. Gorter, C.J., Chapter I The Two Fluid Model for Superconductors and Helium II, in Progress in Low Temperature Physics, C.J. Gorter, Editor. 1955, Elsevier. p. 1-16. 60. London, F., H. London, and F.A. Lindemann, The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 1935. 149(866): p. 71-88. 61. Poole, C.P., et al., 6 - Ginzburg–Landau phenomenological theory, in Superconductivity (Third Edition), C.P. Poole, et al., Editors. 2014, Elsevier: London. p. 225-263. 62. Landau, L.D. and V.L. Ginzburg, On the theory of superconductivity. Zh. Eksp. Teor. Fiz., 1950. 20: p. 1064. 63. Ginzburg, V.L. and L.D. Landau, On the Theory of Superconductivity, in On Superconductivity and Superfluidity: A Scientific Autobiography, V.L. Ginzburg, Editor. 2009, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 113-137. 64. Landau, L.D., On the theory of phase transitions. I. Phys. Z. Sowjet., 1937. 11: p. 26. 65. Abrikosov, A.A., On the magnetic properties of superconductors of the second group. Sov. Phys. JETP, 1957. 5: p. 1174-1182. 66. Landau, L., Diamagnetismus der Metalle. Zeitschrift für Physik, 1930. 64(9): p. 629-637. 67. Abrikosov, A.A., The magnetic properties of superconducting alloys. Journal of Physics and Chemistry of Solids, 1957. 2(3): p. 199-208. 68. Anderson, P.W., Theory of Flux Creep in Hard Superconductors. Physical Review Letters, 1962. 9(7): p. 309-311. 69. Kim, Y.B., C.F. Hempstead, and A.R. Strnad, Flux Creep in Hard Superconductors. Physical Review, 1963. 131(6): p. 2486-2495. 70. Anderson, P.W. and Y.B. Kim, Hard Superconductivity: Theory of the Motion of Abrikosov Flux Lines. Reviews of Modern Physics, 1964. 36(1): p. 39-43. 71. Haung, C.J., Y.C. Chen, and T.Y. Tseng, Flux motion dependence of resistive properties in superconducting YBa2Cu3O7−x thin films. Journal of Applied Physics, 1992. 72(3): p. 1007-1012. 72. Berezinskiǐ, V.L., Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems. Soviet Journal of Experimental and Theoretical Physics, 1971. 32: p. 493. 73. Berezinskiǐ, V.L., Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems. Soviet Journal of Experimental and Theoretical Physics, 1972. 34: p. 610. 74. Kosterlitz, J.M. and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics, 1973. 6(7): p. 1181-1203. 75. Wallin, M. and H. Weber, Resistance scaling at the Kosterlitz-Thouless transition. Physical Review B, 1995. 51(9): p. 6163-6166. 76. Halperin, B.I. and D.R. Nelson, Resistive transition in superconducting films. Journal of Low Temperature Physics, 1979. 36(5-6): p. 599-616. 77. Resnick, D.J., et al., Kosterlitz-Thouless Transition in Proximity-Coupled Superconducting Arrays. Physical Review Letters, 1981. 47(21): p. 1542-1545. 78. Chen, S.-Z., et al., Disorder-induced 2D superconductivity in a NbTiN film grown on Si by ultrahigh-vacuum magneton sputtering. Superconductor Science and Technology, 2022. 35(6). 79. Jain, N.S., Mayur & Nikam, Sagar & Jhavar, Suyog, Metal Deposition: Plasma-Based Processes, in Encyclopedia of Plasma Technology, J.L. Shohet, Editor. 2016. p. 722-740. 80. W. H. Bragg, W.L.B., The Reflection of X-rays by Crystals. Proc. R. Soc. Lond. A, 1913. 88(605): p. 428-438. 81. Birkholz, M., Thin Film Analysis by X-Ray Scattering. 2006: Wiley-VC. 82. Scherrer, P., Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918. 1918: p. 98-100. 83. Kalsoom Akhtar, S.A.K., Sher Bahadar Khan, and Abdullah M. Asiri, Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, in Handbook of Materials Characterization, S.K. Sharma, Editor. 2018, Springer International Publishing AG. p. 113-145. 84. Quantum Design North America - Products - Physical Property Measurement System – Quantum Design PPMS®. [cited 2022 July 13]; Available from: https://www.qdusa.com/products/ppms.html. 85. Gurevich, A., Tuning vortex fluctuations and the resistive transition in superconducting films with a thin overlayer. Physical Review B, 2018. 98(2). 86. Hauser, J.J. and H.C. Theuerer, Superconducting Tantalum Films. Reviews of Modern Physics, 1964. 36(1): p. 80-83. 87. Blatter, G., V.B. Geshkenbein, and A.I. Larkin, From isotropic to anisotropic superconductors: A scaling approach. Physical Review Letters, 1992. 68(6): p. 875-878. 88. Kittaka, S., et al., Angular dependence of the upper critical field of Sr2RuO4. Physical Review B, 2009. 80(17). 89. Liang, Q., et al., Upper critical field and its anisotropy in RbCr3As3. Physical Review B, 2019. 100(21). 90. Shen, D., et al., Two-dimensional superconductivity and magnetotransport from topological surface states in AuSn4 semimetal. Communications Materials, 2020. 1(1). 91. Doria, M.M., E.H. Brandt, and F.M. Peeters, Magnetization of a superconducting film in a perpendicular magnetic field. Physical Review B, 2008. 78(5). 92. Poole, C.P., et al., 11 - Magnetic penetration depth, in Superconductivity (Third Edition), C.P. Poole, et al., Editors. 2014, Elsevier: London. p. 445-484. 93. Yongho Seo, Y.Q., Kyusang Choi, Jongsoo Yoon, Current-induced suppression of superconductivity in tantalum thin films at zero magnetic field. 2005. 94. Sharma, C.H., et al., 2D superconductivity and vortex dynamics in 1T-MoS2. Communications Physics, 2018. 1(1).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86262-
dc.description.abstract近年,如何提升超導薄膜的超導相變溫度Tc為許多實驗的研究重點。其中部分實驗指出在超導金屬薄膜上非超導金屬,在非金屬層不超過一定厚度的前提下會使系統Tc上升,稱為反鄰近效應。本研究中,主要討論於傳統超導材料鉭薄膜上鍍金薄膜,分析其對雙層膜系統之電磁傳輸特性的影響。 首先,本實驗首先著重於以直流濺鍍技術製備Tc接近塊材鉭(Tc ≈ 4.483 K)的薄膜樣品。由於鉭具有常見於塊材鉭的α態與常見於濺鍍薄膜的β態,其中β態的Tc低於1 K,故尋找方法將使薄膜中的鉭偏好α態為本實驗的重點。多次調整參數後發現,提高濺鍍時的基板溫度(高於293 ⁰C)及增加薄膜厚度(約800奈米)可以有效的提升樣品的Tc至3.55~3.65 K,而X光繞射分析結果也顯示基板溫度較高及厚度較厚的樣品具有α態的晶格結構。 進一步,我們固定薄膜鉭的厚度於約800奈米,並在其上方鍍厚度10奈米至100奈米不等的金薄膜,以探討其對樣品的Tc影響。傳統鄰近效應中,雙層膜的Tc隨上層膜的厚度增加而降低。然而,本實驗發現鉭金雙層膜的Tc與金薄膜的厚度dAu間的關係並非單調遞增或遞減,而是呈現先遞增後遞減的變化趨勢,出現反鄰近效應。此非單調關係的可能解釋為,在厚度不高時上層膜可抑制系統的漲落因而改善樣品的Tc,然而當上層膜的厚度持續增加,傳統鄰近效應的影響仍會使樣品Tc降低。 除了樣品Tc的研究,我們亦分析樣品在外加磁場下的電磁傳輸行為,以及驗證其是否有BKT相變,進一步發現部分樣品可能具有二維超導的性質。透過此研究,我們發現了鉭薄膜在金薄膜的影響下展現出非單調的Tc與dAu關係,可協助未來研究者改善超導系統的超導相變溫度。此外,若未來可在不降低Tc的前提下,有效降低樣品厚度,雙層膜系統或可作為二維超導行為的研究對象。zh_TW
dc.description.abstractAn overlayer of normal metal on a superconducting metal film could enhance the Tc of bilayer film. This phenomenon is known as the inverse proximity effect (IPE). In this work, we investigated the effect of the gold (Au) overlayer on the superconducting tantalum (Ta) film and discussed the electromagnetic transport properties of the Ta/Au bilayer film. First, our work focused on the direct current (DC) sputtering parameter of the Ta film. By adjusting substrate temperature and film thickness, we found that a higher temperature (above 295 ⁰C) and a greater film thickness could enhance the Tc of Ta films to about 3.6 K. From the X-ray diffraction patterns, we could also see that the above conditions facilitated the formation of α-Ta. For the Ta film thinner than 133 nm, we could not observe Tc above 2 K. Next, with the thickness of the Ta film fixed at 800 nm, we added an Au overlayer of 10-100 nm thick to investigate its effects on Ta films. With the increase in the thickness of the Au overlayer, the Tc of the bilayer film first increased and then decreased, exhibiting the sign of IPE. A possible explanation for this nonmonotonic relation is that the Au overlayer first mitigated fluctuations in the Ta film and thus enhanced the Tc. However, the proximity effect dominated and thus reduced the Tc as the Au overlayer continued to increase. Furthermore, we checked the existence of 2-D superconductivity by examining the 2-D Tinkham model, the U ∝ -lnH relationship between the activation energy U and the applied field H, and the occurrence of the Berezinskii-Kosterlitz-Thouless transition. Among the seven Ta/Au bilayer samples, the two samples grown on the new silicon substrates exhibited 2-D superconducting behaviors. This result suggests that the normal-superconducting bilayer thin films could be a potential candidate for research on how fluctuations affect 2-D superconducting behavior.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:45:31Z (GMT). No. of bitstreams: 1
U0001-2908202211265600.pdf: 5667289 bytes, checksum: afd0f45d80d8cbd766941679e147b8ee (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv Contents vi Table of Figures ix Chapter 1. Introduction 1 1.1 Brief History of Superconductivity 1 1.2 Proximity Effect (PE) and Inverse Proximity Effect (IPE) 2 1.2.1 Proximity Effect (PE) 2 1.2.2 Inverse Proximity Effect (IPE) 3 1.3 Two-dimensional (2-D) Superconductivity 6 1.4 Two Different Structures of Tantalum and Tantalum Films 9 1.5 Research Motivation and Purpose 13 Chapter 2. Fundamental Principles 14 2.1 Superconductivity Properties 14 2.1.1 Zero Resistance 14 2.1.2 Perfect Diamagnetism 15 2.2 Superconductivity Theories 20 2.2.1 Two-fluid Model 20 2.2.2 London Equations 21 2.2.3 Ginzburg-Landau Theory 23 2.2.4 Abrikosov Vortices 28 2.2.5 Upper Critical Field Hc2 of Thin Film 31 2.2.6 Anderson-Kim Flux Creep Model 32 2.2.7 Berezinskii-Kosterlitz-Thouless Transition 34 Chapter 3. Experiment Method 36 3.1 Experiment Process 36 3.2 Sample Fabrication 37 3.2.1 System Setup 37 3.2.2 Magnetron Sputtering 38 3.2.3 Details of Sample Fabrication 39 3.3 Measurement System and Technique 42 3.3.1 X-ray Diffractometer (XRD) 42 3.3.2 Field Emission Scanning Electron Microscope (FESEM) 43 3.3.3 SQUID Magnetometer and Electric Properties Measurement 45 3.3.4 Physical Property Measurement System (PPMS) 47 Chapter 4. Results and Discussions 48 4.1 Deposition of α-Tantalum Films 48 4.1.1 Adjusting Substrate Temperature Ts 48 4.1.2 Adjusting Film Thickness dTa 54 4.1.3 Relation between Crystalline Structure and Critical Temperature 60 4.2 Critical Temperature Tc of Ta/Au Bilayer Film 62 4.2.1 Normal State Behavior of Ta/Au Bilayer Film 62 4.2.2 Tc Variation due to Au Overlayer 65 4.3 Critical Fields Hc1 and Hc2 of Ta/Au Bilayer Film 71 4.3.1 Upper Critical Field Hc2,c Perpendicular to Ta/Au Bilayer Film 71 4.3.2 Upper Critical Field Hc2,ab Parallel to Ta/Au Bilayer Film 80 4.3.3 Angular Dependence of Hc2 87 4.3.4 Lower Critical Field Hc1 of Ta/Au Bilayer Film 91 4.4 Activation Energy U of Ta/Au Bilayer Film 96 4.5 Berezinskii-Kosterlitz-Thouless Transition in Ta/Au Film 106 Chapter 5. Conclusion 118 References 121
dc.language.isoen
dc.title鉭金雙層薄膜之電磁傳輸特性研究zh_TW
dc.titleElectromagnetic Transport Properties of Ta/Au Bilayer Filmsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃斯衍(Ssu-Yen Huang),李偉立(Wei-Li Lee)
dc.subject.keyword鉭,金,雙層膜,鄰近效應,反鄰近效應,二維超導,zh_TW
dc.subject.keywordtantalum,gold,bilayer film,proximity effect,inverse proximity effect,2-D superconductivity,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202202913
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2022-08-31-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-2908202211265600.pdf5.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved