請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86247完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁(Rita Pei-Yeh Chen) | |
| dc.contributor.author | Tzu-Wei Wang | en |
| dc.contributor.author | 王子維 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:44:37Z | - |
| dc.date.copyright | 2022-09-06 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-30 | |
| dc.identifier.citation | Ahmed, T. F., Ahmed, A., & Imtiaz, F. (2021). History in perspective: How Alzheimer's Disease came to be where it is? Brain Res, 1758, 147342. doi:10.1016/j.brainres.2021.147342 Alzheimer's Association. (2021). 2021 Alzheimer's disease facts and figures. Alzheimers Dement, 17(3), 327-406. doi:10.1002/alz.12328 Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., et al. (1995). An English translation of Alzheimer's 1907 paper, 'Uber eine eigenartige Erkankung der Hirnrinde'. Clin Anat, 8(6), 429-431. doi:10.1002/ca.980080612 Barrett, P. J., Song, Y., Van Horn, W. D., et al. (2012). The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science, 336(6085), 1168-1171. doi:10.1126/science.1219988 Björkhem, I., & Meaney, S. (2004). Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol, 24(5), 806-815. doi:10.1161/01.ATV.0000120374.59826.1b Blennow, K., Hampel, H., Weiner, M., et al. (2010). Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol., 6(3), 131-144. doi:10.1038/nrneurol.2010.4 Bolduc, D. M., Montagna, D. R., Seghers, M. C., et al. (2016). The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase. Elife, 5. doi:10.7554/eLife.17578 Bottorf, L., Rafferty, S., Sahu, I. D., et al. (2017). Utilizing Electron Spin Echo Envelope Modulation To Distinguish between the Local Secondary Structures of an α-Helix and an Amphipathic 3(10)-Helical Peptide. J Phys Chem B, 121(14), 2961-2967. doi:10.1021/acs.jpcb.7b00626 Chandrudu, S., Simerska, P., & Toth, I. (2013). Chemical methods for peptide and protein production. Molecules, 18(4), 4373-4388. doi:10.3390/molecules18044373 Chiang, Y. W., Borbat, P. P., & Freed, J. H. (2005). The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson, 172(2), 279-295. doi:10.1016/j.jmr.2004.10.012 Chiang, Y. W., Zheng, T. Y., Kao, C. J., et al. (2009). Determination of interspin distance distributions by cw-ESR is a single linear inverse problem. Biophys J, 97(3), 930-936. doi:10.1016/j.bpj.2009.05.030 Deligiannakis, Y., Louloudi, M., & Hadjiliadis, N. (2000). Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord. Chem. Rev., 204(1), 1-112. doi:10.1016/S0010-8545(99)00218-0 Dietschy, J. M., & Turley, S. D. (2004). Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res, 45(8), 1375-1397. doi:10.1194/jlr.R400004-JLR200 Feringa, F. M., & van der Kant, R. (2021). Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci, 13, 690372. doi:10.3389/fnagi.2021.690372 Frost, B., Jacks, R. L., & Diamond, M. I. (2009). Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem, 284(19), 12845-12852. doi:10.1074/jbc.M808759200 Gallardo, G., & Holtzman, D. M. (2019). Amyloid-β and Tau at the Crossroads of Alzheimer's Disease. Adv Exp Med Biol, 1184, 187-203. doi:10.1007/978-981-32-9358-8_16 Gatz, M., Reynolds, C. A., Fratiglioni, L., et al. (2006). Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry, 63(2), 168-174. doi:10.1001/archpsyc.63.2.168 Gee, J. R., & Keller, J. N. (2005). Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol, 37(6), 1145-1150. doi:10.1016/j.biocel.2004.10.004 Georgieva, E. R., Roy, A. S., Grigoryants, V. M., et al. (2012). Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. J Magn Reson, 216, 69-77. doi:10.1016/j.jmr.2012.01.004 Goedert, M., & Spillantini, M. G. (2006). A century of Alzheimer's disease. Science, 314(5800), 777-781. doi:10.1126/science.1132814 Gomez, W., Morales, R., Maracaja-Coutinho, V., et al. (2020). Down syndrome and Alzheimer's disease: common molecular traits beyond the amyloid precursor protein. Aging (Albany NY), 12(1), 1011-1033. doi:10.18632/aging.102677 Hampel, H., Cummings, J., Blennow, K., et al. (2021). Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol, 17(9), 580-589. doi:10.1038/s41582-021-00520-w Hardy, J. A., & Higgins, G. A. (1992). Alzheimer's disease: the amyloid cascade hypothesis. Science, 256(5054), 184-185. doi:10.1126/science.1566067 Hitzenberger, M., Götz, A., Menig, S., et al. (2020). The dynamics of γ-secretase and its substrates. Semin Cell Dev Biol, 105, 86-101. doi:10.1016/j.semcdb.2020.04.008 Jack, C. R., Jr., Albert, M. S., Knopman, D. S., et al. (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 257-262. doi:10.1016/j.jalz.2011.03.004 Jack, C. R., Jr., Wiste, H. J., Therneau, T. M., et al. (2019). Associations of Amyloid, Tau, and Neurodegeneration Biomarker Profiles With Rates of Memory Decline Among Individuals Without Dementia. Jama, 321(23), 2316-2325. doi:10.1001/jama.2019.7437 Jeschke, G. (2012). DEER distance measurements on proteins. Annu Rev Phys Chem, 63, 419-446. doi:10.1146/annurev-physchem-032511-143716 Jeschke, G., Chechik, V., Ionita, P., et al. (2006). DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson, 30(3), 473-498. doi:10.1007/BF03166213 Jin, P., Pan, Y., Pan, Z., et al. (2018). Alzheimer-like brain metabolic and structural features in cholesterol-fed rabbit detected by magnetic resonance imaging. Lipids Health Dis, 17(1), 61. doi:10.1186/s12944-018-0705-9 Johnson, K. A., Schultz, A., Betensky, R. A., et al. (2016). Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol, 79(1), 110-119. doi:10.1002/ana.24546 Karch, C. M., & Goate, A. M. (2015). Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry, 77(1), 43-51. doi:10.1016/j.biopsych.2014.05.006 Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., et al. (2003). Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A, 100(11), 6382-6387. doi:10.1073/pnas.1037392100 Lai, Y. C., Kuo, Y. H., & Chiang, Y. W. (2019). Identifying Protein Conformational Dynamics Using Spin-label ESR. Chem Asian J, 14(22), 3981-3991. doi:10.1002/asia.201900855 Lanfranco, M. F., Ng, C. A., & Rebeck, G. W. (2020). ApoE Lipidation as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci, 21(17). doi:10.3390/ijms21176336 Lee, J. C., Kim, S. J., Hong, S., et al. (2019). Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med, 51(5), 1-10. doi:10.1038/s12276-019-0250-2 Lin, T., Tjernberg, L. O., & Schedin-Weiss, S. (2021). Neuronal Trafficking of the Amyloid Precursor Protein-What Do We Really Know? Biomedicines, 9(7). doi:10.3390/biomedicines9070801 Lista, S., O'Bryant, S. E., Blennow, K., et al. (2015). Biomarkers in Sporadic and Familial Alzheimer's Disease. J Alzheimers Dis, 47(2), 291-317. doi:10.3233/jad-143006 Lomize, M. A., Pogozheva, I. D., Joo, H., et al. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res, 40(Database issue), D370-376. doi:10.1093/nar/gkr703 Matsumura, N., Takami, M., Okochi, M., et al. (2014). γ-Secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of β-carboxyl-terminal fragment. J Biol Chem, 289(8), 5109-5121. doi:10.1074/jbc.M113.510131 Mattsson, N., Andreasson, U., Zetterberg, H., et al. (2017). Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol, 74(5), 557-566. doi:10.1001/jamaneurol.2016.6117 Medina, M., Khachaturian, Z. S., Rossor, M., et al. (2017). Toward common mechanisms for risk factors in Alzheimer's syndrome. Alzheimers Dement (N Y), 3(4), 571-578. doi:10.1016/j.trci.2017.08.009 Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., et al. (2004). Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci U S A, 101(12), 4083-4088. doi:10.1073/pnas.0307332101 Mokhtar, S. H., Bakhuraysah, M. M., Cram, D. S., et al. (2013). The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton. Int J Alzheimer's Dis, 2013, 910502. doi:10.1155/2013/910502 Nadezhdin, K. D., Bocharova, O. V., Bocharov, E. V., et al. (2011). Structural and dynamic study of the transmembrane domain of the amyloid precursor protein. Acta Naturae, 3(1), 69-76. Nelson, P. T., Alafuzoff, I., Bigio, E. H., et al. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol, 71(5), 362-381. doi:10.1097/NEN.0b013e31825018f7 Nieweg, K., Schaller, H., & Pfrieger, F. W. (2009). Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem, 109(1), 125-134. doi:10.1111/j.1471-4159.2009.05917.x Näslund, J., Schierhorn, A., Hellman, U., et al. (1994). Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc. Natl. Acad. Sci. U.S.A., 91(18), 8378-8382. doi:10.1073/pnas.91.18.8378 Periz, G., & Fortini, M. E. (2004). Functional reconstitution of gamma-secretase through coordinated expression of presenilin, nicastrin, Aph-1, and Pen-2. J Neurosci Res, 77(3), 309-322. doi:10.1002/jnr.20203 Pester, O., Barrett, P. J., Hornburg, D., et al. (2013). The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase. J Am Chem Soc, 135(4), 1317-1329. doi:10.1021/ja3112093 Piaceri, I., Nacmias, B., & Sorbi, S. (2013). Genetics of familial and sporadic Alzheimer's disease. Front Biosci (Elite Ed), 5(1), 167-177. doi:10.2741/e605 Shafiei, S. S., Guerrero-Muñoz, M. J., & Castillo-Carranza, D. L. (2017). Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Front Aging Neurosci, 9, 83. doi:10.3389/fnagi.2017.00083 Sonawane, S. K., & Chinnathambi, S. (2018). Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer's Disease: A Hypothesis. J Mol Neurosci, 65(4), 480-490. doi:10.1007/s12031-018-1111-5 Sung, T. C., Li, C. Y., Lai, Y. C., et al. (2015). Solution Structure of Apoptotic BAX Oligomer: Oligomerization Likely Precedes Membrane Insertion. Structure, 23(10), 1878-1888. doi:10.1016/j.str.2015.07.013 Tagarelli, A., Piro, A., Tagarelli, G., et al. (2006). Alois Alzheimer: a hundred years after the discovery of the eponymous disorder. Int J Biomed Sci, 2(2), 196-204. Takami, M., Nagashima, Y., Sano, Y., et al. (2009). gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci, 29(41), 13042-13052. doi:10.1523/jneurosci.2362-09.2009 Tanzi, R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harb Perspect Med, 2(10). doi:10.1101/cshperspect.a006296 Uéda, K., Masliah, E., Saitoh, T., et al. (1990). Alz-50 recognizes a phosphorylated epitope of tau protein. J Neurosci, 10(10), 3295-3304. doi:10.1523/jneurosci.10-10-03295.1990 Vetrivel, K. S., Cheng, H., Lin, W., et al. (2004). Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem, 279(43), 44945-44954. doi:10.1074/jbc.M407986200 Wakabayashi, T., Craessaerts, K., Bammens, L., et al. (2009). Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nat Cell Biol, 11(11), 1340-1346. doi:10.1038/ncb1978 Wang, H., Kulas, J. A., Wang, C., et al. (2021). Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci U S A, 118(33). doi:10.1073/pnas.2102191118 Winkler, E., Kamp, F., Scheuring, J., et al. (2012). Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness. J Biol Chem, 287(25), 21326-21334. doi:10.1074/jbc.M112.356659 Wolfe, M. S., Xia, W., Ostaszewski, B. L., et al. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398(6727), 513-517. doi:10.1038/19077 World Health Organization. (2021). Dementia. Xiong, H., Callaghan, D., Jones, A., et al. (2008). Cholesterol retention in Alzheimer's brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis, 29(3), 422-437. doi:10.1016/j.nbd.2007.10.005 Zhou, A., Abu-Baker, S., Sahu, I. D., et al. (2012). Determining α-helical and β-sheet secondary structures via pulsed electron spin resonance spectroscopy. Biochemistry, 51(38), 7417-7419. doi:10.1021/bi3010736 Zhou, R., Yang, G., Guo, X., et al. (2019). Recognition of the amyloid precursor protein by human γ-secretase. Science, 363(6428). doi:10.1126/science.aaw0930 尤韻婷. (2018). 研究脂質成分對類澱粉前驅蛋白跨膜區結構的影響. Retrieved from https://hdl.handle.net/11296/xekzs8 郭俊廷. (2020). 以電子自旋共振光譜儀探索類澱粉前驅蛋白於跨膜區之結構. Retrieved from https://hdl.handle.net/11296/32r226 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86247 | - |
| dc.description.abstract | 百分之九十以上的阿茲海默症 (Alzheimer’s disease, AD) 屬於偶發性的案例,缺乏顯著的基因遺傳,老化、高血壓、高膽固醇與糖尿病等是目前已知的非基因危險因子。目前的研究發現,患者腦中最初的病理特徵來自乙型類澱粉胜肽 (Amyloid-β, Aβ) 聚集,此胜肽由稱為類澱粉前驅蛋白 (amyloid precursor protein, APP) 的第一型膜蛋白經β 分泌酶 (β-secretase) 與 γ 分泌酶 (γ-secretase) 作用產生。然而,γ 分泌酶缺乏專一的剪切區域,因此產生 C 端序列不同的乙型類澱粉胜肽。這些長度不一的胜肽具有不同聚集能力與細胞毒性,其中 42 個胺基酸組成的乙型類澱粉胜肽有較強的聚集能力,容易聚集在患者的腦中,造成毒性。腦中膽固醇含量是影響非遺傳性阿茲海默症的危險因子之一,我們認為膽固醇的存在可能影響類澱粉前驅蛋白穿膜區域的結構,進而改變 γ 分泌酶的切位。因此以固相合成法合成包含類澱粉前驅蛋白穿膜區域序列的胜肽 (KKWK-Aβ22-55),並在特定點位置將殘基取代為半胱氨酸,以利於含有自由基的化合物 MTSSL 標記,最後將這些胜肽分別鑲嵌在微脂體中,透過包含 double electron-electron resonance (DEER)、electron spin echo envelope modulation (ESEEM) 及 continuous-wave electron spin resonance (CW-ESR) 在內的電子自旋共振光譜技術分析這些自旋標記間的距離變化。本研究結果顯示膽固醇的加入會降低類澱粉前驅蛋白穿膜區域的結構彈性,同時增加穿膜區域結構長度;另外 36-40 片段由胺基酸序列 VGGVV 組成,包含兩個相連的甘胺酸卻依然維持 α-螺旋結構,並未產生甘胺酸扭結 (GG kink) 而形成 310 螺旋,此外,該區域的結構會受到膽固醇的加入影響,我們推測會向螺旋的反方向扭轉,使 V36d8 與 40R1 間的距離在 10% 膽固醇加入有最短距離。另外,由 CW-ESR 光譜分析所得的距離分布顯示 29/36R1 相較於 40/47R1 有較近的分子內自旋標記距離。綜合上述光譜學所得資訊,得以一窺脂雙層中的膽固醇含量對類澱粉前驅蛋白穿膜區域結構的調節。 | zh_TW |
| dc.description.abstract | More than 90% of Alzheimer’s disease (AD) occurs sporadically without genetic linkage. Aging, hypertension, high cholesterol content, and diabetes are the well-known non-genomic risk factors of AD. The aggregation of amyloid-β (Aβ) peptides is the initial event in the pathogenesis of AD. The Aβ peptides are cleaved from amyloid precursor protein (APP) by β-secretase and γ-secretase. γ-secretase cleaves at the transmembrane region of APP without a specific cutting site, producing various lengths of Aβ peptides with different aggregation propensity and toxicity. The peptide Aβ42, which has 42 amino acid residues, is the most toxic peptide and the primary form in the Aβ aggregates in the AD brain. Since cholesterol content is one risk factor of sporadic AD, we aim to explore whether cholesterol can affect the structure of the APP transmembrane region, thereby modulating the γ-secretase cutting behavior. We synthesized a series of peptides containing the transmembrane region of APP, made spin-labeling, and identified the structural change of peptides embedded in the DOPC liposomes containing different amounts of cholesterol by double electron-electron resonance (DEER), electron spin echo envelope modulation (ESEEM), and continuous-wave (CW) electron spin resonance spectroscopy. Our results show that cholesterol decreases the structural flexibility of the APP transmembrane region and extends the transmembrane helix in the lipid bilayer. The segment of 36-40 (sequence VGGVV), which contains a Gly-Gly sequence, forms an α-helical structure rather than a 310 helix. The relative orientation of V36 and 40R1 varies in the presence of cholesterol, and the distance of these two residues is the closest in the presence of 10% cholesterol. Additionally, the distance distributions extracted from the CW-ESR spectra showed that the distance between 29/36R1 was shorter than that between 40/47R1. Together, this study provides spectroscopic evidence showing how the cholesterol content modulates the secondary structure of the APP membrane-spanning region in the lipid bilayer. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:44:37Z (GMT). No. of bitstreams: 1 U0001-2608202221443500.pdf: 4988961 bytes, checksum: 5ece390423342388f3cb7d696517b128 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝誌 i 摘要 iii Abstract iv Abbreviations vi Content ix Figure Contents xii Table Contents xvi Chapter 1 Introduction 1 1.1 Backgrounds of Alzheimer’s disease 1 1.1.1 The prevalence rate of AD 1 1.1.2 Classification of AD 2 1.1.3 History of AD research 4 1.1.4 Biomarkers of AD and the disease progression 8 1.2 APP metabolism 11 1.2.1 The formation of Aβ peptides 11 1.2.2 A variety of Aβ peptides 12 1.2.3 Membrane thickening and the Aβ variants 15 1.3 Cholesterol and AD 16 1.3.1 Cholesterol regulation in the brain 16 1.3.2 Association of cholesterol, APP, and γ-secretase 19 1.4 The aim of this thesis 23 Chapter 2 Materials and methods 25 2.1 Materials 25 2.1.1 Chemicals 25 2.1.2 Consumable materials 28 2.1.3 Instruments 28 2.2 Methods 30 2.2.1 Solid-phase peptide synthesis (SPPS) 30 2.2.2 Peptide cleavage 33 2.2.3 MTSSL labeling of peptides and purification 34 2.2.4 Liposome preparation 35 2.2.5 Circular dichroism (CD) measurement 37 2.2.6 Sample preparation for ESR measurement 37 2.2.7 CW-ESR measurement 38 2.2.8 Pulsed ESR measurement (ESEEM and DEER) 38 Chapter 3 Results 41 3.1 Development of the experimental protocol to study the cholesterolinduced difference in the transmembrane region of APP 41 3.1.1 The overall workflow 41 3.1.2 The design of the KKWK-Aβ22-55 peptide to explore critical regions 44 3.1.3 Synthesis of the KKWK-Aβ22-55 mutant peptides 50 3.1.4 Spin-labeling and purification of the KKWK-Aβ22-55 mutant peptides 58 3.2 Structure analysis of the spin-labeled KKWK-Aβ22-55 peptides in the liposomes 65 3.2.1 The overall secondary structure of the liposome-embedded peptides by CD spectroscopy 65 3.2.2 Cholesterol-induced changes between 29R1 and 47R1 71 3.2.3 Structural analysis of segments 36-40 by ESEEM 74 3.2.4 CW-ESR analysis of 29/36R1, 29/40R1, and 40/47R1 78 Chapter 4 Discussion, Conclusion, and Future work 86 4.1 The cholesterol-induced membrane thickening 87 4.2 The existence of GG-kink 88 4.3 Discussion about the cholesterol-binding site 90 4.4 The use of cholesterol or hydroxyl cholesterol 91 Reference 92 | |
| dc.language.iso | en | |
| dc.subject | 脂質體 | zh_TW |
| dc.subject | 乙型類澱粉胜肽 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 類澱粉前驅蛋白 | zh_TW |
| dc.subject | 電子自旋共振 | zh_TW |
| dc.subject | Electron spin resonance | en |
| dc.subject | Amyloid β | en |
| dc.subject | Amyloid precursor protein | en |
| dc.subject | Alzheimer’s disease | en |
| dc.subject | Liposome | en |
| dc.title | 以電子自旋共振光譜儀探討膽固醇對類澱粉前驅蛋白穿膜區域結構之影響 | zh_TW |
| dc.title | Studying the Effect of Cholesterol on the Structure of Membrane-spanning Region of Amyloid Precursor Protein by Electron Spin Resonance Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江昀緯(Yun-Wei Chiang),廖永豐(Yung-Feng Liao),許家維(Jia-Wei Hsu) | |
| dc.subject.keyword | 乙型類澱粉胜肽,類澱粉前驅蛋白,阿茲海默症,脂質體,電子自旋共振, | zh_TW |
| dc.subject.keyword | Amyloid β,Amyloid precursor protein,Alzheimer’s disease,Liposome,Electron spin resonance, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202202877 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-06 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2608202221443500.pdf | 4.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
