請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86236
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 温進德(Jin-Der Wen) | |
dc.contributor.author | Shih-Jie Chiu | en |
dc.contributor.author | 邱仕捷 | zh_TW |
dc.date.accessioned | 2023-03-19T23:43:59Z | - |
dc.date.copyright | 2022-09-07 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-31 | |
dc.identifier.citation | Ashkin, A. (1970). 'Acceleration and Trapping of Particles by Radiation Pressure.' Physical Review Letters 24(4): 156-159. Ashkin, A. and J. M. Dziedzic (1987). 'Optical Trapping and Manipulation of Viruses and Bacteria.' 235(4795): 1517-1520. Bénard, L., N. Mathy, M. Grunberg-Manago, B. Ehresmann, C. Ehresmann and C. Portier (1998). 'Identification in a pseudoknot of a U⋅G motif essential for the regulation of the expression of ribosomal protein S15.' 95(5): 2564-2567. Blázquez-Castro, A., J. Fernández-Piqueras and J. Santos (2020). 'Genetic Material Manipulation and Modification by Optical Trapping and Nanosurgery-A Perspective.' Frontiers in bioengineering and biotechnology 8: 580937-580937. Boehringer, D. and N. Ban (2007). 'Trapping the ribosome to control gene expression.' Cell 130(6): 983-985. Camenzind, K. (2013). Quantifying Trapping Forces in a Simplified Optical Tweezers Setup, Stony Brook University. Carter, A. P., W. M. Clemons, Jr., D. E. Brodersen, R. J. Morgan-Warren, T. Hartsch, B. T. Wimberly and V. Ramakrishnan (2001). 'Crystal structure of an initiation factor bound to the 30S ribosomal subunit.' Science 291(5503): 498-501. Dahlquist, K. D. and J. D. Puglisi (2000). 'Interaction of translation initiation factor IF1 with the E. coli ribosomal A site.' J Mol Biol 299(1): 1-15. Ehresmann, C., C. Philippe, E. Westhof, L. Bénard, C. Portier and B. Ehresmann (1995). 'A pseudoknot is required for efficient translational initiation and regulation of the Escherichia coli rpsO gene coding for ribosomal protein S15.' Biochem Cell Biol 73(11-12): 1131-1140. Fu, Y., K. Deiorio-Haggar, J. Anthony and M. M. Meyer (2013). 'Most RNAs regulating ribosomal protein biosynthesis in Escherichia coli are narrowly distributed to Gammaproteobacteria.' Nucleic Acids Res 41(6): 3491-3503. Goyal, A., R. Belardinelli, C. Maracci, P. Milón and M. V. Rodnina (2015). 'Directional transition from initiation to elongation in bacterial translation.' Nucleic Acids Res 43(22): 10700-10712. Greenleaf, W. J., K. L. Frieda, D. A. Foster, M. T. Woodside and S. M. Block (2008). 'Direct observation of hierarchical folding in single riboswitch aptamers.' Science 319(5863): 630-633. Harada, Y. and T. Asakura (1996). 'Radiation forces on a dielectric sphere in the Rayleigh scattering regime.' Optics Communications 124(5): 529-541. Kaminishi, T., D. N. Wilson, C. Takemoto, J. M. Harms, M. Kawazoe, F. Schluenzen, K. Hanawa-Suetsugu, M. Shirouzu, P. Fucini and S. Yokoyama (2007). 'A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction.' Structure 15(3): 289-297. Kuo, T. W. (2021). Using Optical Tweezers to Study the RNA Unwnding Mechanism of Ribosomal Protein bS1. Master, National Tawian University. Laursen, B. S., H. P. Sørensen, K. K. Mortensen and H. U. Sperling-Petersen (2005). 'Initiation of protein synthesis in bacteria.' Microbiol Mol Biol Rev 69(1): 101-123. Lenton, I. C. D., E. K. Scott, H. Rubinsztein-Dunlop and I. A. Favre-Bulle (2020). 'Optical Tweezers Exploring Neuroscience.' 8. Lu, W. L. (2021). Functional Characterization of Ribosomal Protein bS1 in Translation Initiation. Master, National Taiwan University. Manosas, M., J. D. Wen, P. T. Li, S. B. Smith, C. Bustamante, I. Tinoco, Jr. and F. Ritort (2007). 'Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments.' Biophys J 92(9): 3010-3021. Marshall, R. A., C. E. Aitken and J. D. Puglisi (2009). 'GTP hydrolysis by IF2 guides progression of the ribosome into elongation.' Mol Cell 35(1): 37-47. Marzi, S., A. G. Myasnikov, A. Serganov, C. Ehresmann, P. Romby, M. Yusupov and B. P. Klaholz (2007). 'Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.' Cell 130(6): 1019-1031. Mathy, N., O. Pellegrini, A. Serganov, D. J. Patel, C. Ehresmann and C. Portier (2004). 'Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation.' Mol Microbiol 52(3): 661-675. Milon, P., M. Carotti, A. L. Konevega, W. Wintermeyer, M. V. Rodnina and C. O. Gualerzi (2010). 'The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex.' EMBO Rep 11(4): 312-316. Philippe, C., F. Eyermann, L. Bénard, C. Portier, B. Ehresmann and C. Ehresmann (1993). 'Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site.' Proc Natl Acad Sci U S A 90(10): 4394-4398. Philippe, C., C. Portier, M. Mougel, M. Grunberg-Manago, J. P. Ebel, B. Ehresmann and C. Ehresmann (1990). 'Target site of Escherichia coli ribosomal protein S15 on its messenger RNA. Conformation and interaction with the protein.' J Mol Biol 211(2): 415-426. Portier, C., L. Dondon and M. Grunberg-Manago (1990). 'Translational autocontrol of the Escherichia coli ribosomal protein S15.' J Mol Biol 211(2): 407-414. Rodnina, M. V., H. Stark, A. Savelsbergh, H. J. Wieden, D. Mohr, N. B. Matassova, F. Peske, T. Daviter, C. O. Gualerzi and W. Wintermeyer (2000). 'GTPases mechanisms and functions of translation factors on the ribosome.' Biol Chem 381(5-6): 377-387. Serganov, A., E. Ennifar, C. Portier, B. Ehresmann and C. Ehresmann (2002). 'Do mRNA and rRNA Binding Sites of E.coli Ribosomal Protein S15 Share Common Structural Determinants?' Journal of Molecular Biology 320(5): 963-978. Serganov, A. and E. Nudler (2013). 'A decade of riboswitches.' Cell 152(1-2): 17-24. Sheetz, M. P. and J. A. Spudich (1983). 'Movement of myosin-coated fluorescent beads on actin cables in vitro.' Nature 303(5912): 31-35. Shine, J. and L. Dalgarno (1974). 'The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.' Proc Natl Acad Sci U S A 71(4): 1342-1346. Steitz, J. A. and K. Jakes (1975). 'How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli.' Proc Natl Acad Sci U S A 72(12): 4734-4738. Wen, J. D., L. Lancaster, C. Hodges, A. C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante and I. Tinoco (2008). 'Following translation by single ribosomes one codon at a time.' Nature 452(7187): 598-603. White, K. H. and K. Visscher (2011). 'Optical trapping and unfolding of RNA.' Methods Mol Biol 783: 21-43. Wu, Y. J. (2013). Using optical tweezers to study the mechanism of structural rearrangement in 5'UTR of rpso mRNA. Master Thesis, National Taiwan University. Wu, Y. J., C. H. Wu, A. Y. Yeh and J. D. Wen (2014). 'Folding a stable RNA pseudoknot through rearrangement of two hairpin structures.' Nucleic Acids Res 42(7): 4505-4515. Zengel, J. M. and L. Lindahl (1994). 'Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli.' Prog Nucleic Acid Res Mol Biol 47: 331-370. Zimmermann, R. A. and K. Singh-Bergmann (1979). 'Binding sites for ribosomal proteins S8 and S15 in the 16 S RNA of Escherichia coli.' Biochim Biophys Acta 563(2): 422-431. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86236 | - |
dc.description.abstract | 信使核醣核酸 (mRNA) 的轉譯起始作用在細胞中會受到許多不同方式來進行調控,其中一種常見的方式是藉由改變核醣核酸的結構以控制轉譯作用的進行。在本實驗中將以大腸桿菌 (Escherichia coli) 的rpsO基因以及由該基因所轉譯出的核醣體蛋白uS15作為研究目標。 uS15能夠藉由結合rpsO 信使核醣核酸的5’端未轉譯區(RPSOutr)來抑制核醣體的轉譯作用,達到調控uS15的表現量。在本篇實驗中利用光鉗技術 (Optical tweezers) 來研究uS15對於rpsO信使核醣核酸之結構動力學影響,光鉗技術能將研究目標縮小至單一分子的層級並且能夠即時觀察到兩者間的構形以及動力學變化。rpsO信使核醣核酸在一般生理環境中能夠形成雙髮夾 (double-hairpin) 或假結 (pseudoknot) 此兩種結構。在先前的研究中,RPSOutr 透過光鉗技術發現擁有四種主要的展開結構。在這裡,我們也觀察到了類似的結果。接著,我們添加了 uS15 來測試它如何影響 RPSOutr 的結構形成。實驗結果證實了uS15能夠去影響假結結構的比例以及其展開所需要的力。另外,再接續的實驗中使用了mS2L。mS2L 是 RPSOutr在第二個髮夾中具有突變,而此突變使得形成假結結構變得更加困難。然而在加入 10 μM 的 uS15 蛋白後,假結結構就得以被觀察到。 為了進一步研究RPSOutr在實際生物中的結構摺疊情形,在接續的實驗中加入了30S核醣體次單元、起始因子IF1和IF3來觀察RNA的不同摺疊變化,我們發現30S的結合可能導致髮夾結構的不穩定。此外,在30S的結合過程中,RPSOutr更難形成假結結構,導致uS15更難或無法結合。從結果中我們觀察到uS15可以穩定並促進RPSOutr假結的形成,同時30S的存在會去影響髮夾結構的形成,使的RPSOutr結構處在不穩定狀態。 | zh_TW |
dc.description.abstract | Translation initiation of mRNA is regulated through different ways in the cell. Modulating the structure of mRNA is a common mechanism for cells to regulate their mRNA translation. In this study, the 5’ untranslated region (5’UTR) of the Escherichia coli (E. coli) rpsO transcript is our main research objective. E. coli ribosomal protein uS15, which is translated from the rpsO transcript, regulates its own biosynthesis by interacting with the mRNA. When the concentration of uS15 protein is in excess, the protein represses its translation through binding to the 5’UTR of rpsO mRNA (termed RPSOutr). RPSOutr can fold into either a double-hairpin or pseudoknot structure. However, ribosomal protein uS15 can only bind to the pseudoknot. To study the interaction between the mRNA and protein, here we use a single molecule technique, optical tweezers, for dynamic measurements. Optical tweezers provide us a real-time observation of a single mRNA conformational change. In previous studies, four major types of structural transitions of RPSOutr were observed via force ramping (gradually increasing the force to unfold RNA). Here we also observed similar results. Furthermore, we added uS15 to test how it affects the conformational dynamics of the RNA. The result suggests that in the presence of uS15, the proportion and unfolding force of the pseudoknot increase remarkably. mS2L, a variant of RPSOutr with mutations in the second hairpin, is also selected for further studies. Mutations on the second hairpin of the mRNA make it more difficult to form a pseudoknot structure. Our data showed that the pseudoknot structure was observed after adding 10 μM of uS15 protein. To further study the interaction of RPSOutr, 30S, initiation factors IF1 and IF3 were also added to the experiment. Different conformation changes of RNA were observed. We discovered that the binding of 30S could lead to destabilization of the upstream sequence of RPSOutr. Moreover, during the binding of 30S, RPSOutr is harder to fold into a pseudoknot structure, which caused uS15 more difficult or unable to bind the structure. In conclusion, we observed that uS15 can stabilize and promote the formation of pseudoknots of RPSOutr. Moreover, the presence of 30S affects the formation of hairpin structures, making the RPSOutr structure in an unstable state. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:43:59Z (GMT). No. of bitstreams: 1 U0001-2908202212244800.pdf: 4994259 bytes, checksum: 81e89db810fc97f47a75ed0f9f76f50f (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 審定書 i 誌謝 ii 中文摘要 iv ABSTRACT v Chapter 1 Introduction 1 1.1 E. coli rpsO mRNA 1 1.2 Translational initiation of E. coli 2 1.3 Translational autoregulation of E. coli ribosomal protein uS15 3 1.4 Optical tweezers 4 1.5 Aims 5 Chapter 2 Materials 6 2.1 Bacterial strains 6 2.2 Kits 6 2.3 Chemicals 7 2.4 Primers 9 2.5 Enzymes 10 2.6 Buffers 10 Chapter 3 Methods 15 3.1 RNA preparation 15 3.1.1 Bacterial culture 15 3.1.2 In vitro transcription 15 3.2 Preparation for Optical tweezers experiments 15 3.2.1 5’ handle preparation 15 3.2.2 Modification of 5’ handles 16 3.2.3 EMSA 17 3.2.4 3’ handle preparation 17 3.3 uS15 protein preparation 19 3.3.1 Bacterial culture 19 3.3.2 Cell lysis 19 3.3.3 Fast protein liquid chromatography (FPLC) 19 3.3.4 Bradford assay 20 3.3.5 Luciferase assay for uS15 inhibition 20 3.4 Optical tweezers 21 3.4.1 Anti-DIG bead preparation 21 3.4.2 Experimental setup for optical tweezers 22 3.4.3 Optical tweezers calibration 22 3.4.4 Force ramping and constant force 22 3.5 Purification of 30S and 50S ribosomal subunits 23 3.5.1 Bacterial culture 23 3.5.2 Sucrose gradient preparation 23 3.5.3 70S purification: cell lysis and cushion 24 3.5.4 30S and 50S purification 24 3.5.5 30S reactivation and dilution 25 Chapter 4 Results 26 4.1 Preparation of RPSOutr and mS2L RNA for optical tweezers 26 4.1.1 RNA construct preparation 26 4.1.2 3’ and 5’ handle preparation 26 4.2 Purification of ribosomal protein uS15 27 4.3 uS15 activity by Luciferase assay 27 4.4 Purification of 30S and 50S 28 4.5 Unfolding of the RPSOutr structures 28 4.6 uS15 r-protein influence on RPSOutr 29 4.7 Unfolding structure of mS2L 30 4.7.1 mS2L 30 4.7.2 mS2L with 1 and 10 μM of uS15 protein 31 4.8 Conformational changes of mS2L 31 4.9 The interactions of 30S and uS15 with the structure of RPSOutr 32 4.9.1 30S influence on RPSOutr 32 4.9.2 Conformational changes of RPSOutr with the presence of 30S and uS15 33 4.9.3 Conformational changes of mS2L with the presence of 30S and uS15 33 4.10 The influence of 30S on hairpin structure. 34 4.10.1 RPSOutr with initiation factors 34 4.10.2 Further characterization of 1T pattern 35 Chapter 5 Discussion 38 5.1 uS15 r-protein stabilizes the pseudoknot structure of RPSOutr 38 5.2 Counteraction between uS15 and 30S on RPSOutr 39 5.3 Structural stability of hairpins affected by 30S 39 5.4 Future perspective 40 References 42 | |
dc.language.iso | en | |
dc.title | 以光鉗技術研究核醣體及核醣體蛋白uS15與rpsO基因5’端未轉譯區之交互作用 | zh_TW |
dc.title | Studying the Interaction of Ribosomes and Ribosomal Protein uS15 with 5’UTR of rpsO mRNA by Using Optical Tweezers | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李弘文(Hung-Wen Li),李以仁(I-Ren Lee) | |
dc.subject.keyword | 轉譯調控,轉譯起始,光鉗技術,uS15核醣體蛋白,30S核醣體次單元, | zh_TW |
dc.subject.keyword | translational regulation,translation initiation,optical tweezers,uS15 ribosomal protein,30S ribosomal subunit, | en |
dc.relation.page | 92 | |
dc.identifier.doi | 10.6342/NTU202202919 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-08-31 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
dc.date.embargo-lift | 2027-08-31 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2908202212244800.pdf 此日期後於網路公開 2027-08-31 | 4.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。