Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬zh_TW
dc.contributor.advisorRuey-Fen Liouen
dc.contributor.author陳宜豐zh_TW
dc.contributor.authorYi-Feng Chenen
dc.date.accessioned2023-03-19T23:43:31Z-
dc.date.available2023-12-27-
dc.date.copyright2022-09-02-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAdams, E. L., Rice, P. J., Graves, B., Ensley, H. E., Yu, H., Brown, G. D., et al. 2008. Differential high-affinity interaction of Dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain. J. Pharmacol. Exp. Ther. 325:115-123.
Bacete, L., Mélida, H., Miedes, E., and Molina, A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93:614-636.
Barghahn, S., Arnal, G., Jain, N., Petutschnig, E., Brumer, H., and Lipka, V. 2021. Mixed linkage β-1,3/1,4-glucan oligosaccharides induce defense responses in hordeum vulgare and Arabidopsis thaliana. Front. Plant Sci. 12:1-13. doi: 10.3389/fpls.2021.682439.
Bellande, K., Bono, J., Savelli, B., Jamet, E., and Canut, H. 2017. Plant lectins and lectin receptor-like kinases : how do they sense the outside ? Int. J. Mol. Sci. 18:1164. doi: 10.3390/ijms18061164.
Benitez-Alfonso, Y., Faulkner, C., Pendle, A., Miyashima, S., Helariutta, Y., and Maule, A. 2013. Symplastic intercellular connectivity regulates lateral root patterning. Dev. Cell 26:136-147.
Bisceglia, N. G., Matteo Gravino, and Daniel V. Savatin. 2015. Luminol-based assay for detection of immunity elicitor-induced hydrogen peroxide production in Arabidopsis thaliana leaves. Bio-protocol 5:e1685. doi: 10.21769/BioProtoc.1685.
Brown, G. D. 2006. Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6:33-43.
Brown, G. D., Willment, J. A., and Whitehead, L. 2018. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 18:374-389.
Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A., and Stacey, G. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3:1-19. doi: 10.7554/eLife.03766.
Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123-136.
Chen, L. H., Kračun, S. K., Nissen, K. S., Mravec, J., Jørgensen, B., Labavitch, J., and Stergiopoulos, I. 2021. A diverse member of the fungal Avr4 effector family interacts with de-esterified pectin in plant cell walls to disrupt their integrity. Sci. Adv. 7:eabe0809. doi: 10.1126/sciadv.abe0809.
Chen, X. Y., and Kim, J. Y. 2009. Callose synthesis in higher plants. Plant Signal. Behav. 4:489-492.
Cheval, C., Samwald, S., Johnston, M. G., deKeijzer, J., Breakspear, A., Liu, X., Bellandi, A., Kadota, Y., Zipfel, C., and Faulkner, C. 2020. Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proc. Natl. Acad. Sci. USA 117:9621-9629.
Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., Liang, Y., Lee, S. Y., and Stacey, G. 2014. Identification of a plant receptor for extracellular ATP. Science 343:290-294.
Couto, D., and Zipfel, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537-552.
Daccord, N., Celton, J., Linsmith, G., Becker, C., Choisne, N., Schijlen, E., et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49:1099-1106.
Deeks, M. J., Calcutt, J. R., Ingle, E. K. S., Hawkins, T. J., Chapman, S., Richardson, A. C., et al. 2012. A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 22:1595-1600.
Denness, L., McKenna, J. F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C., and Hamann, T. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 156:1364-1374.
Drickamer, K., and Taylor, M. E. 2015. Recent insights into structures and functions of C-type lectins in the immune system. Curr. Opin. Struct. Biol. 34:26-34.
Erwig, J., Ghareeb, H., Kopischke, M., Hacke, R., Matei, A., Petutschnig, E., and Lipka, V. 2017. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5). New Phytol. 215:382-396.
Faulkner, C., Petutschnig, E., Benitez-Alfonso, Y., Beck, M., Robatzek, S., Lipka, V., and Maule, A. J. 2013. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc. Natl. Acad. Sci. USA 110:9166-9170.
Gabald, T., Dohm, J. C., and Marcet-houben, M. 2020. Parental origin of the allotetraploid tobacco Nicotiana benthamiana. Plant J. 102:541-554.
Ge, X., Li, G. J., Wang, S. B., Zhu, H., Zhu, T., Wang, X., and Xia, Y. 2007. AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol. 145:204-215.
Geijtenbeek, T. B. H., and Gringhuis, S. I. 2009. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9:465-479.
Giordano, L., Allasia, V., Cremades, A., Hok, S., Panabières, F., Bailly-Maître, B., and Keller, H. 2022. A plant receptor domain with functional analogies to animal malectin disables ER stress responses upon infection. iScience 25:103877.
Han, B., Baruah, K., Cox, E., Vanrompay, D., and Bossier, P. 2020. Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: a mini-review. Front. Immunol. 11:1-8. doi: 10.3389/fimmu.2020.00.
Herre, J., Marshall, A. S. J., Caron, E., Edwards, A. D., Williams, D. L., Schweighoffer, E., et al. 2004. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038-4045.
del Hierro, I., Mélida, H., Broyart, C., Santiago, J., and Molina, A. 2021. Computational prediction method to decipher receptor-glycoligand interactions in plant immunity. Plant J. 105:1710-1726.
Ishikawa, K., Tamura, K., Ueda, H., Ito, Y., Nakano, A., Hara-Nishimura, I., and Shimada, T. 2018. Synaptotagmin-associated endoplasmic reticulum-plasma membrane contact sites are localized to immobile ER tubules. Plant Physiol. 178:641-653
Kang, X., Kirui, A., Muszyński, A., Widanage, M. C. D., Chen, A., Azadi, P., Wang, P., Mentink-Vigier, F., and Wang, T. 2018. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat. Commun. 9:1-12. doi: 10.1038/s41467-018-05199-0.
Kankanala, P., Czymmek, K., and Valent, B. 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706-724.
Khang, C. H., Berruyer, R., Giraldo, M. C., Kankanala, P., Park, S. Y., Czymmek, K., Kang, S., and Valent, B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388-1403.
Kim, H. S., Thammarat, P., Lommel, S. A., Hogan, C. S., and Charkowski, A. O. 2011. Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol. Plant-Microbe Interact. 24:773-786.
Lannoo, N., and VanDamme, E. J. M. 2014. Lectin domains at the frontiers of plant defense. Front. Plant Sci. 5:1-16. doi: 10.3389/fpls.2014.00397.
Lee, E., Vanneste, S., Pérez-Sancho, J., Benitez-Fuente, F., Strelau, M., Macho, A. P., et al. 2019. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc. Natl. Acad. Sci. USA 116:1420-1429.
Levy, A., Zheng, J. Y., and Lazarowitz, S. G. 2015. Synaptotagmin SYTA forms ER-Plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25:2018-2025.
Lewis, J. D., and Lazarowitz, S. G. 2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc. Natl. Acad. Sci. USA 107:2491-2496.
Li, C., Qian, T., He, R., Wan, C., Liu, Y., and Yu, H. 2021a. Endoplasmic reticulum-plasma membrane contact sites: regulators, mechanisms, and physiological functions. Front. Cell Dev. Biol. 9:627700 doi: 10.3389/fcell.2021.627700.
Li, Y. H., Ke, T. Y., Shih, W. C., Liou, R. F., and Wang, C. W. 2021b. NbSOBIR1 partitions into plasma membrane microdomains and binds ER-localized NbRLP1. Front. Plant Sci. 12:1-17. doi: 10.3389/fpls.2021.721548.
Luo, X., Wu, W., Liang, Y., Xu, N., Wang, Z., Zou, H., and Liu, J. 2020. Tyrosine phosphorylation of the lectin receptor‐like kinase LORE regulates plant immunity. EMBO J. 39: e102856. doi: 10.15252/embj.2019102856.
Marakalala, M. J., Kerrigan, A. M., and Brown, G. D. 2011. Dectin-1 : a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm. Genome 22:55-65.
Mbengue, M., Bourdais, G., Gervasi, F., Beck, M., Zhou, J., Spallek, T., Bartels, S., Boller, T., Ueda, T., Kuhn, H., and Robatzek, S. 2016. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proc. Natl. Acad. Sci. USA 113:11034-11039.
Mélida, H., Sandoval-Sierra, J.V., Diéguez-Uribeondo, J., and Bulone, V. 2013. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryot. Cell 12:194-203.
Mélida, H., Sopeña-Torres, S., Bacete, L., Garrido-Arandia, M., Jordá, L., López, G., Muñoz-Barrios, A., Pacios, L. F., and Molina, A. 2018. Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J. 93:34-49.
Mendes, R., Garbeva, P., and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663.
Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:19613-19618.
Naik, K., Mishra, S., Srichandan, H., Singh, P. K., and Sarangi, P. K. 2019. Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatal. Agric. Biotechnol. 21:101326.
Naveed, Z. A., Wei, X., Chen, J., Mubeen, H., and Ali, G. S. 2020. The PTI to ETI continuum in Phytophthora-plant interactions. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.593905.
Nu, T. S., Bottrill, A. R., Jones, A. M. E., and Peck, S. C. 2007. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51:931-940.
Ozment, T. R., Goldman, M. P., Kalbfleisch, J. H., andWilliams, D. L. 2012. Soluble glucan is internalized and trafficked to the golgi apparatus in macrophages via a clathrin-mediated, lipid raft-regulated mechanism. J. Pharmacol. Exp. Ther. 342:808-815.
Peng, K. C., Wang, C. W., Wu, C. H., Huang, C. T., and Liou, R. F. 2015. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol. Plant-Microbe Interact. 28:913-926.
Petutschnig, E. K., Stolze, M., Lipka, U., Kopischke, M., Horlacher, J., Valerius, O., Rozhon, W., Gust, A. A., Kemmerling, B., Poppenberger, B., Braus, G. H., Nürnberger, T., and Lipka, V. 2014. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing. New Phytol. 204:955-967.
Phillips, M. J., and Voeltz, G. K. 2016. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17:69-82.
Qutob, D., Kamoun, S., and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32:361-373.
Robatzek, S., Delphine Chinchilla, and Thomas Boller. 2016. Ligand induced endocytosis of the PRR FLS2 in Arabidopsis. Genes Dev. 20:537-542.
Rogers, N. C., Slack, E. C., Edwards, A. D., Nolte, M. A., Schulz, O., Schweighoffer, E., Williams, D. L., Gordon, S., Tybulewicz, V. L., Brown, G. D., and Reis E Sousa, C. 2005. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C-type lectins. Immunity 22:507-517.
Saijo, Y., Loo, E. P. iian, and Yasuda, S. 2018. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 93:592-613.
Sancho, D., and Reis e Sousa, C. 2012. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 30:491-529.
Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178-183.
Siao, W., Wang, P., Voigt, B., Hussey, P. J., and Baluska, F. 2016. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites. J. Exp. Bot. 67:6161-6171.
Sierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., and Ivanov, N.V. 2014. The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 5:3833.
De Smet, R., Adams, K. L., Vandepoele, K., Van Montagu, M. C. E., Maere, S., and Van de Peer, Y. 2013. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl. Acad. Sci. USA 110:2898-2903.
Smith, J. M., Leslie, M. E., Robinson, S. J., Korasick, D. A., Zhang, T., Backues, S. K., Cornish, P.V., Koo, A. J., Bednarek, S. Y., and Heese, A. 2014. Loss of Arabidopsis thaliana Dynamin-related protein 2B reveals separation of innate immune signaling pathways. PLoS Pathog. 10:e1004578. doi: 10.1371/journal.ppat.1004578.
Speakman, E. A., Dambuza, I. M., Salazar, F., and Brown, G. D. 2020. T cell antifungal immunity and the role of C-Type lectin receptors. Trends Immunol. 41:61-76.
Stefano, G., Renna, L., Wormsbaecher, C., Gamble, J., Zienkiewicz, K., and Brandizzi, F. 2018b. Plant endocytosis requires the ER membrane-anchored proteins VAP27-1 and VAP27-3. Cell Rep. 23:2299-2307.
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A., and Mittler, R. 2011. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14:691-699.
Taylor, N. G. 2011. A role for Arabidopsis dynamin related proteins DRP2A/B in endocytosis; DRP2 function is essential for plant growth. Plant Mol. Biol. 76:117-129.
Tintor, N., Ross, A., Kanehara, K., Yamada, K., Fan, L., Kemmerling, B., Nürnberger, T., Tsuda, K., and Saijo, Y. 2013. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc. Natl. Acad. Sci. USA 110:6211-6216.
Tomczynska, I., Stumpe, M., Doan, T. G., and Mauch, F. 2020. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases. New Phytol. 227:1467-1478.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., and Singh, B. K. 2020. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18:607-621.
Van de Peer, Y., Fawcett, J. A., Proost, S., Sterck, L., and Vandepoele, K. 2009. The flowering world: a tale of duplications. Trends Plant Sci. 14:680-688.
Voigt, C. A. 2014. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front. Plant Sci. 5:1-6. doi: 10.3389/fpls.2014.00168.
Wang, B., Andargie, M., and Fang, R. 2022. The function and biosynthesis of callose in high plants. Heliyon. 8:e09248. doi: 10.1016/j.heliyon.2022.e09248.
Wang, P., Hawes, C., and Hussey, P. J. 2017. Plant endoplasmic reticulum-plasma membrane contact sites. Trends Plant Sci. 22:289-297.
Wang, P., Hawkins, T. J., Richardson, C., Cummins, I., Deeks, M. J., Sparkes, I., Hawes, C., and Hussey, P. J. 2014. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 24:1397-1405.
Wang, P., Richardson, C., Hawkins, T. J., Sparkes, I., Hawes, C., and Hussey, P. J. 2016. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol. 210:1311-1326.
Wang, Y., and Bouwmeester, K. 2017. L-type lectin receptor kinases: New forces in plant immunity. PLoS Pathog. 13:e1006433. doi: 10.1371/journal.ppat.1006433.
Wanke, A., Malisic, M., Wawra, S., and Zuccaro, A. 2021. Unraveling the sugar code: the role of microbial extracellular glycans in plant-microbe interactions. J. Exp. Bot. 72:15-35.
Wanke, A., Rovenich, H., Schwanke, F., Velte, S., Becker, S., Hehemann, J. H., Wawra, S., and Zuccaro, A. 2020. Plant species-specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems. Plant J. 102:1142-1156.
Xie, B., Wang, X., Zhu, M., Zhang, Z., and Hong, Z. 2011. CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J. 65:1-14. doi: 10.1111/j.1365-313X.2010.04399.x.
Xu, S., Huo, J., Gunawan, M., Su, I. H., and Lam, K. P. 2009. Activated dectin-1 localizes to lipid raft microdomains for signaling and activation of phagocytosis and cytokine production in dendritic cells. J. Biol. Chem. 284:22005-22011.
Xue, D. X., Li, C. L., Xie, Z. P., and Staehelin, C. 2019. LYK4 is a component of a tripartite chitin receptor complex in Arabidopsis thaliana. J. Exp. Bot. 70:5507-5516.
Ye, X. C., Hao, Q., Ma, W. J., Zhao, Q. C., Wang, W. W., Yin, H. H., et al. 2020. Dectin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J. Neuroinflammation 17:1-16. doi: 10.1186/s12974-019-1693-z.
Yeh, Y., Panzeri, D., Kadota, Y., Huang, Y., Huang, P., Tao, C., Roux, M., Chien, H., Chin, T., Chu, P., Zipfel, C., and Zimmerli, L. 2016. The Arabidopsis malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-Independent pattern-triggered immunity. Plant Cell 28:1701-1721.
Yin, X., Chen, S., and Eisenbarth, S. C. 2021. Dendritic cell regulation of T helper cells. Annu. Rev. Immunol. 39:759-790.
Zaman, M. F., Nenadic, A., Radojičić, A., Rosado, A., and Beh, C. T. 2020. Sticking with it: ER-PM membrane contact sites as a coordinating nexus for regulating lipids and proteins at the cell cortex. Front. Cell Dev. Biol. 8:1-23. doi: 10.3389/fcell.2020.00675.
Zipfel, C., and Oldroyd, G. E. D. 2017. Plant signalling in symbiosis and immunity. Nature 543:328-336.
Zuluaga, A. P., Vega-Arreguín, J. C., Fei, Z., Ponnala, L., Lee, S. J., Matas, A. J., Patev, S., Fry, W. E., and Rose, J. K. C. 2016. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Mol. Plant Pathol. 17:29-41.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86228-
dc.description.abstract真菌及卵菌細胞壁由許多種類的多醣堆疊構成,其中β-1,3;1,6-葡聚醣含量最多,而且許多類別的β-1,3;1,6-葡聚醣可作為microbe-associated molecular patterns (MAMPs) 引起植物基礎免疫反應 (pattern-triggered immunity; PTI)。目前關於醣類MAMPs所引起PTI之訊息傳遞路徑的瞭解主要奠基於真菌幾丁質的研究,至於β-葡聚醣如何引起免疫反應則尚未明瞭。本研究發現以昆布多醣(其以β-1,3;1,6-葡聚醣為主成分)處理圓葉菸草時,引起活性氧分子(reactive oxygen species; ROS)生合成、癒傷葡聚醣沿著葉脈累積,並導致原生質絲關閉。為探討相關調控機制,本研究自圓葉菸草選殖Dectin-1 (哺乳類動物負責辨識β-1,3-葡聚醣的受體) 之同源性基因,定名為NbCLRK,其編碼C-type lectin receptor like kinase (NbCLRK),而且不同種類植物僅含有單一或少數NbCLRK同源基因。在圓葉菸草被疫病菌感染的早期,NbCLRK的表現明顯下調。以Tobacco rattle virus (TRV) 介導NbCLRK基因靜默顯著增強昆布多醣在圓葉菸草引發的活性氧生合成量,顯示NbCLRK扮演負調控的角色。疫病菌接種試驗顯示,短暫過表現NbCLRK-GFP降低圓葉菸草的抗病性,基因靜默NbCLRK則導致較高的抗病性。有趣的是,將NbCLRK-GFP與內質網標誌蛋白mCherry-KDEL共表現時,NbCLRK-GFP的螢光訊號主要位於內質網,且呈現點狀分布;進一步分析發現NbCLRK-GFP的點狀分布與VAP27-1-mCherry所標記的內質網-細胞膜接觸點 (endoplasmic reticulum-plasma membrane contact sites; EPCSs) 部分疊合。綜合上述結果,本研究發現分布於內質網的NbCLRK可負面調控植物對抗疫病菌以及β-葡聚醣誘發的免疫反應,並揭示其作用可能涉及EPCSs,然而NbCLRK究竟如何藉由EPCSs影響植物免疫反應尚待更多探討。zh_TW
dc.description.abstractThe cell walls of fungi and oomycetes contain abundant polysaccharides with different compositions and structures. Among them, β-1,3;1,6-glucans are particularly enriched and many of them have been identified as microbe-associated molecular patterns (MAMPs) that elicit pattern-triggered immunity (PTI) in plants. Even though the defense signaling induced by fungal chitin has been well elucidated, our knowledge about β-glucan-induced immunity is very limiting. This study demonstrates that treatment of Nicotiana benthamiana with laminarin, which consists of β-1,3-glucan backbones with β-1,6-branches, triggered reactive oxygen species (ROS) production, callose deposition along leaf veins, and the closure of plasmodesmata. To investigate the mechanism, a gene homologous to Dectin-1, known as β-glucan receptor in mammals, was cloned from N. benthamiana, herein named NbCLRK, which encodes C-type lectin receptor like kinase. Phylogenetic analysis revealed NbCLRK and its homologs are singletons conserved in all plant species analyzed in this study. Tobacco rattle virus (TRV)-mediated gene silencing of NbCLRK enhanced ROS production triggered by laminarin, which suggests a negative role of NbCLRK in the regulation of plant defense response. When N. benthamiana was challenged with the oomycete pathogen Phytophthora parasitica, NbCLRK was downregulated in the early infection stage. Moreover, overexpression of NbCLRK downregulated, whereas gene knock-down enhanced plant resistance against P. parasitica. Of note, when transiently overexpressed by agroinfiltration, NbCLRK-GFP was found primarily on the punctate structures of cell periphery, which colocalized with the endoplasmic reticulum (ER) marker mCherry-KDEL. When coexpressed with the ER-plasma membrane (PM) contact site (EPCS) marker VAMP-associated protein (VAP) 27-1-mCherry, NbCLRK-GFP showed a distribution pattern partially overlapping with that of VAP27-1-mCherry. In summary, this study indicates that ER-localized NbCLRK negatively regulates not only plant response toward β-glucan but also immunity against P. parasitica, likely through the function of EPCS. More studies are needed to know how NbCLRK takes part in the regulation of PTI responses via the possible involvement of EPCS.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:43:31Z (GMT). No. of bitstreams: 1
U0001-3008202220005500.pdf: 2678851 bytes, checksum: dd01312c32ad6eca0ff8c2c8bad11139 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘 要 iii
Abstract v
Contents vii
Introduction 1
1. Pattern-triggered plant immunity (PTI) 1
2. Microbial cell wall polysaccharides as MAMPs 1
3. β-1,3;1,6-glucan-induced plant immunity 2
4. Pattern-induced callose deposition 3
5. Plant lectin family 4
6. C-type lectins of Mammals 5
7. C-type lectins in dendritic cell 5
8. The role of endoplasmic reticulum (ER) in plant immunity 6
9. Research aims 8
Material and Methods 9
1. Growth condition and plant materials 9
2. P. parasitica culture 9
3. P. parasitica infection assay 9
4. Molecular cloning and sequence analysis of the C-type lectin receptor like kinase-encoding gene from N. benthamiana 10
5. Tobacco rattle virus-mediated gene silencing 11
6. Quantitative reverse transcriptase-PCR (qRT-PCR) 11
7. Callose staining 11
8. Plasmodesmata (PD) conductivity 12
9. ROS burst detection 12
10. Transient expression and confocal microscopy 13
Results 14
1. Laminarin induces PTI responses in N. benthamiana 14
2. CLRK is a singleton in the plant genomes 15
3. NbCLRK is downregulated upon infection by P. parasitica 16
4. Overexpression of NbCLRK enhances plant susceptibility toward P. parasitica 16
5. Silencing of NbCLRK enhances plant immunity against P. parasitica 16
6. Silencing of CLRK enhances β-glucan-induced immune response 17
7. Subcellular localization of NbCLRK is associated with EPCSs 18
Discussion 20
1. Laminarin induces callose deposition and PD closure in N. benthamiana 20
2. PD closure triggered by laminarin 21
3. CLRKs as singletons in the plant genomes 21
4. Potential role of NbCLRK at EPCSs 23
5. CLRK negatively regulates β-glucan-triggered ROS production 24
6. NbCLRK negatively regulate plant immunity towards P. parasitica 25
7. Conclusion 26
References 27
Table 39
Figures 40
-
dc.language.isoen-
dc.subject植物免疫反應zh_TW
dc.subject疫病菌zh_TW
dc.subjectβ-葡聚醣zh_TW
dc.subjectC類凝集素zh_TW
dc.subject植物免疫反應zh_TW
dc.subject疫病菌zh_TW
dc.subject內質網zh_TW
dc.subjectβ-葡聚醣zh_TW
dc.subjectC類凝集素zh_TW
dc.subject內質網zh_TW
dc.subjectC-type lectinen
dc.subjectβ-glucanen
dc.subjectendoplasmic reticulumen
dc.subjectPhytophthora parasiticaen
dc.subjectplant immunityen
dc.subjectC-type lectinen
dc.subjectβ-glucanen
dc.subjectendoplasmic reticulumen
dc.subjectPhytophthora parasiticaen
dc.subjectplant immunityen
dc.title圓葉菸草內質網之 C-type lectin receptor like kinase NbCLRK參與植物對β-葡聚醣及疫病菌的免疫反應zh_TW
dc.titleThe ER-localized C-type lectin receptor like kinase NbCLRK is involved in plant immune response toward β-glucans and Phytophthora parasiticaen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林乃君;吳志航;鄭秋萍zh_TW
dc.contributor.oralexamcommitteeNai-Chun Lin;Chih-Hang Wu;Chiu-Ping Chengen
dc.subject.keyword內質網,疫病菌,植物免疫反應,C類凝集素,β-葡聚醣,zh_TW
dc.subject.keywordβ-glucan,endoplasmic reticulum,Phytophthora parasitica,plant immunity,C-type lectin,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202202988-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-08-31-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2027-08-31-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  此日期後於網路公開 2027-08-31
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved