Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉建豪zh_TW
dc.contributor.advisorChien-Hao Liuen
dc.contributor.author孟慶軒zh_TW
dc.contributor.authorChing-Hsuan Mengen
dc.date.accessioned2023-03-19T23:42:05Z-
dc.date.available2023-12-26-
dc.date.copyright2022-09-05-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] K. Owens, “Long-Range Communications without Large, Power-Hungry Antennas,” DARPA Microsyst. Tecnol. Syst., pp. 1–6, 2017.
[2] K. Ren, M. R. Nikkhah, and N. Behdad, “Earth-Effect Emulation Using Periodic Structures in Scaled-Model Characterization of HF Antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 12, pp. 2731–2735, 2019.
[3] K. Carver and J. Mink, “Microstrip antenna technology,” IEEE Trans. Antennas Propag., vol. 29, no. 1, pp. 2–24, Jan. 1981.
[4] C. A. Balanis, “Antenna theory : analysis and design,” Wiley Interscience, 2005.
[5] S. R. Best and J. D. Morrow, “The effectiveness of space-filling fractal geometry in lowering resonant frequency,” IEEE Antennas Wirel. Propag. Lett., vol. 1, pp. 112–115, 2002.
[6] R. C. Hansen and M. Burke, “Antennas with magneto-dielectrics,” Microw. Opt. Technol. Lett., vol. 26, no. 2, pp. 75–78, Jul. 2000.
[7] T. Nan et al., “Acoustically actuated ultra-compact NEMS magnetoelectric antennas,” Nat. Commun., vol. 8, no. 1, pp. 1–7, 2017.
[8] Y. Zhou, C.-C. Chen, and J. L. Volakis, “A compact 4-element dual-band GPS array,” in IEEE Antennas and Propagation Society International Symposium, 2009, pp. 1–4.
[9] Shao-Yi Chen, Hsi-Tseng Chou, and Yi-Ling Chiu, “A size-reduced microstrip antenna for the applications of GPS signal reception,” in IEEE Antennas and Propagation International Symposium, 2007, pp. 5443–5446.
[10] H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, “Shortening ratios of modified dipole antennas,” IEEE Trans. Antennas Propag., vol. 32, no. 4, pp. 385–386, Apr. 1984.
[11] A. Holub and M.Polivka, “A Novel Microstrip Patch Antenna Miniaturization Technique: A Meanderly Folded Shorted-Patch Antenna,” in 2008 14th Conference on Microwave Techniques, 2008, pp. 1–4.
[12] J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas Propag. Mag., vol. 44, no. 1, pp. 20–36, 2002.
[13] D. H. Wqrner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. Mag., vol. 45, no. 1, pp. 38–57, Feb. 2003.
[14] G. Y. Yang, J. K. Du, B. Huang, Y. A. Jin, and M. H. Xu, “Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer,” AIP Advances, vol. 7, no. 4, p. 045206, 2017.
[15] D. Yudistira, A. Boes, D. Janner, V. Pruneri, J. Friend, and A. Mitchell, “Polariton-based band gap and generation of surface acoustic waves in acoustic superlattice lithium niobate,” Journal of Applied Physics, vol. 114, no. 5, p. 054904, 2013.
[16] Y. Chao, J. Sheng, J. A. Sedlacek, and J. P. Shaffer, “Surface phonon polaritons on anisotropic piezoelectric superlattices,” Physical Review B, vol. 93, no. 4, 2016
[17] D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Applied Physics Letters, vol. 95, no. 5, p. 052901, 2009.
[18] X. J. Zhang, R. Q. Zhu, J. Zhao, Y. F.Chen, and Y. Y. Zhu, “Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 69, no. 8, pp. 1–10, 2004.
[19] C. P. Huang and Y. Y. Zhu, “Piezoelectric-induced polariton coupling in a superlattice,” Phys. Rev. Lett., vol. 94, no. 11, pp. 1–4, 2005.
[20] 陽明益, “壓電超晶格之極子特性研究,”博士論文,國立台灣大學, 2008.
[21] Y. F. Chou and C. H. Shih, “Electromagnetic radiation of polaritons in piezoelectric superlattices,” in Proceedings of SPIE - The International Society for Optical Engineering, 2011, vol. 7978, pp. 797820–797828.
[22] 林子揚, “壓電極子發射與接收電磁波的研究,” 碩士論文, 國立臺灣大學機械工程學研究所, 2013.
[23] 許展榮, “利用壓電超晶格極子之機械波與電磁波共生特性開發FM天線,” 碩士論文, 國立臺灣大學機械工程學研究所, 2017.
[24] 呂晉祥, “微型化壓電超晶格HF天線,” 碩士論文, 國立臺灣大學機械工程學研究所, 2019.
[25] 張博智, “透明壓電超晶格小天線應用於FM頻段,” 碩士論文, 國立臺灣大學機械工程學研究所, 2020.
[26] H. A. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE, vol. 35, no. 12, pp. 1479–1484, 1947.
[27] L. J. CHU, “Physical Limitations of Omni-Directional Antennas,” J. Appl. Phys. 19, vol. 19, no. 6, pp. 1163–1175, 1948.
[28] P. Banerjee and T. Bezboruah, “Theoretical study of radiation characteristics of short dipole antenna”, Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol. II, March 12 - 14, Hong Kong, 2014.
[29] P. Banerjee and T. Bezboruah, “Some aspects of finite length dipole antenna design”, Proceedings of World Congress on Engineering 2014, Vol.1, WCE 2014, July 2-4, 2014.
[30] M. N. Abdallah, W. Dyab, and T. K. Sarkar, “Electrically small antennas design Challenges,” IEEE Antennas Propag. Soc. AP-S Int. Symp., vol. 4, no. 6, pp. 768–769, 2015.
[31] D. Sievenpiper et al., “Experimental validation of performance limits and design guidelines for small antennas,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 8–19, 2012.
[32] R. F. Harrington, “Effect of antenna size on gain, bandwidth, and efficiency,” J. Res. Natl. Bur. Stand. Sect. D Radio Propag., vol. 64D, no. 1, pp. 1–12, 1960.
[33] J. S. McLean, “A Re-examination of the fundamental limits on the radiation Q of Electrically Small Antennas,” IEEE Trans. Antennas Propag., vol. 44, no. 5, pp. 672–676, 1996.
[34] A. D. Yaghjian and S. R. Best, “Impedance, bandwidth, and Q of antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 4, pp. 1298–1324, 2005.
[35] R. C. Hansen, “Fundamental limitations in Antennas,” IEEE Trans. Antennas Propag., vol. 69, no. 2, pp. 170–182, 1981.
[36] “Totalecer: Radiating field regions of an antenna.” [Online]. Available: https://totalecer.blogspot.com/2016/02/radiating-field-regions-of-antenna.html. [Accessed: 03-Dec-2018].
[37] S. Puri, K. Kaur, and N. Kumar, “A review of antennas for wireless communication devices,” Int. J. Electron. Electr. Eng., vol. 2, no. 3, pp. 199–201, 2014.
[38] D. H. Werner and S. Ganguly, “An Overview of Fractal Antenna Engineering Research,” IEEE Antennas Propag. Mag., vol. 45, no. 1, pp. 38–57, 2003.
[39] Y. Mouzouna, H. Nasraoui, A. Mouhsen, J. ElAoufi, and G. Chababi, “Miniaturized Meander Antenna using Low Cost Paper Substrate,” Int. Conf. Multimed. Comput. Syst. -Proceedings, vol. 1, no. 6, pp. 447–450, 2017.
[40] H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, “Shortening ratios of modified dipole antennas,” IEEE Trans. Antennas Propag., vol. 32, no. 4, pp. 385–386, Apr. 1984.
[41] T. Endo, Y. Sunahara, S. Satoh, and T. Katagi, “Resonant frequency and radiation efficiency of meander line antennas,” Electron. Commun. Japan (Part II Electron., vol. 83, no. 1, pp. 52–58, Jan. 2000.
[42] R. C. Hansen and M. Burke, “Antennas with magneto-dielectrics,” Microw. Opt. Technol. Lett., vol. 26, no. 2, pp. 75–78, Jul. 2000.
[43] J. A. Bickford, R. S. Mcnabb, P. A. Ward, and D. K. Freeman, “Low Frequency Mechanical Antennas,” 2017 IEEE Int. Symp. Antennas Propag. Usn. Natl. Radio Sci. Meet., vol. 2, no. 7, pp. 1475–1476, 2017.
[44] H. C. Burch and A. Garraud, “Experimental Generation of ELF Radio Signals using a Rotating Magnet,” IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 6265–6272, 2018.
[45] T. J. Prins, “Going beyond Chu’s limit:ULF Radiation with Directly Modulated Spinning Magnet,” University of California Electrical Engineering Master Thesis, pp. 21–24, 2019.
[46] J. H. Rowen, F. G. Eggers, and W. Strauss, “Generation of microwave electromagnetic Radiation in Magnetic Materials,” Journal of Applied Physics, vol. 32, no. 3, pp. S313-S315, 1961.
[47] R. D. Mindlin, “Electromagnetic radiation from a vibrating quartz plate,” International Journal of Solids and Structures, vol. 9, no. 6, pp. 697-702, 1973.
[48] P. C. Y. Lee, “Electromagnetic radiation from an AT‐cut quartz plate under lateral‐field excitation,” Journal of Applied Physics, vol. 65, no. 4, pp. 1395-1399, 1989.
[49] P. C. Y. Lee, Y. G. Kim, and J. H. Prevost, “Electromagnetic radiation from doubly rotated piezoelectric crystal plates vibrating at thickness frequencies,” Journal of Applied Physics, vol. 67, no. 11, pp. 6633-6642, 1990.
[50] C. Campbell and R. Weber, “Calculation of radiated electromagnetic power from bulk acoustic wave resonators,” in 1993 IEEE International Frequency Control Symposium, 1993: IEEE, pp. 472-475.
[51] J. Yang, “Piezoelectromagnetic waves in a ceramic plate,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, pp. 1035-1039, 2004.
[52] J. P. Domann and G. P. Carman, “Strain powered antennas,” Journal of Applied Physics, vol. 121, no. 4, p. 044905, 2017.
[53] J. P. Domann, “On Magnetoelastodynamics,” Ph.D. dissertation, University of California, Los Angeles, 2017.
[54] Z. Yao and Y. E. Wang, “3D Modeling of BAW-based Multiferroic Antennas,” 2017 IEEE Antennas Propag. Soc. Int. Symp. Proc., pp. 1125–1126, 2017.
[55] Z. Yao, Y. E. Wang, S. Keller, and G. P. Carman, “Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound,” IEEE Antennas Propag Mag, vol. 63, no. 8, pp. 3335-3344, 2015.
[56] T. Nan, H. Lin, and Y. Gao, “Acoustically actuated ultra-compact NEMS Magnetoelectric Antennas,” Nat. Commun., vol. 8, no. 1, pp. 1–7, 2017.
[57] A. E. Hassanien, M. Breen, M.-H. Li, and S. Gong, “Acoustically driven electromagnetic radiating elements,” Scientific Reports, vol. 10, no. 1, pp. 1-12, 2020.
[58] A. E. Hassanien, M. Breen, M.-H. Li, and S. Gong, “A theoretical study of acoustically driven antennas,” Journal of Applied Physics, vol. 127, no. 1, p. 014903, 2020.
[59] J. A. Bickford, A. E. Duwel, M. S. Weinberg, R. S. McNabb, D. K. Freeman, and P. A. Ward, “Performance of electrically small conventional and Mechanical Antennas,” IEEE Trans. Antennas Propag, vol. 67, no. 4, pp. 2209–2223, Apr. 2019.
[60] M. I. Hussein, G. M. Hulbert, and R. A. Scott, “Dispersive elastodynamics of 1D banded materials and structures: analysis,” Journal of Sound and Vibration, vol. 289, no. 4-5, pp. 779-806, 2006.
[61] R. Khajehtourian and M. I. Hussein, “Dispersion characteristics of a nonlinear elastic metamaterial,” AIP Advances, vol. 4, no. 12, p. 124308, 2014.
[62] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Physical Review Letters, vol. 71, no. 13, pp. 2022-2025, 1993.
[63] M. Sigalas and E. N. Economou, “Band structure of elastic waves in two dimensional systems,” Solid State Communications, vol. 86, no. 3, pp. 141-143, 1993.
[64] X. Zhou and T. Schoepf, “Inhibited spontaneous emission in solid-State Physics and Electronics,” IET Conf. Publ., vol. 12, no. 605 CP, pp. 288–295, 2012.
[65] K. Uchino, Advanced piezoelectric materials: Science and technology. Cambridge: Woodhead Publishing, 2017.
[66] Y. Y. Zhu, Y. F. Chen, and S. N. Zhu, “Acoustic superlattices and ultrasonic waves Excited by Crossed-field Scheme,” Mater. Lett., vol. 28, no. 4–6, pp. 503–505, 1996.
[67] X. J. Zhang, R. Q. Zhu, and J. Zhao, “Phonon-polariton Dispersion and the Polariton-based Photonic Band Gap in Piezoelectric Superlattices,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 69, no. 8, pp. 1–10, 2004.
[68] W. Zhang, Z. Liu, and Z. Wang, “Band structures and transmission Spectra of Piezoelectric Superlattices,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 19, pp. 71–78, 2005.
[69] H. Liu et al., “Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect,” Phys. Rev. B, vol. 71, no. 12, p. 125106, Mar. 2005.
[70] Y. -F. Chou and M. -Y. Yang, “Energy conversion in piezoelectric superlattices,” Behav. Mech. Multifunct. Compos. Mater. 2007, vol. 6526, no. 7, pp. 1–9, 2007.
[71] X. Ma and H. Zheng, “A VLF resonant antenna based on Piezoelectric Ceramics,” in 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, pp. 338–341, 2021.
[72] G. Xu, S. Xiao, Y. Li, and B.-Z. Wang, “Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite,” Physics Letters A, vol. 385, p. 126959, 2021.
[73] Z. Yao et al., “Modeling of Multiple Dynamics in the Radiation of Bulk Acoustic Wave Antennas,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 5, pp. 5–18, 2020 .
[74] G. Xu and S. Xiao, “Modeling of Piezoelectric Resonator Antennas for VLF Electromagnetic Radiation,” in 2020 Cross Strait Radio Science & Wireless Technology Conference, Fuzhou, China, pp. 1–3,2020.
[75] 李尚軒, “特高頻壓電超晶格極子天線之電磁輻射分析,” 碩士論文, 國立台灣大學機械工程研究所, 2018.
[76] 張哲源, “壓電微型化天線陣列應用於VHF波源判定,” 碩士論文, 國立臺灣大學機械工程學研究所, 2020.
[77] 白立宇, “脈衝雷射激發壓電超晶格受聲學致動的電磁輻射,” 碩士論文, 國立臺灣大學機械工程學研究所, 2021.
[78] D. Feng, N. BenMing, and J. F. Hong, “Enhancement of second-harmonic Generation in LiNbO3 Crystals with periodic Laminar Ferroelectric Domains,” Appl. Phys. Lett., vol. 37, no. 7, pp. 607–609, 1980.
[79] L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in Polarization Switching of Lithium Niobate,” Appl. Phys. Lett., vol. 81, no. 9, pp. 1666–1668, 2002.
[80] S. Thaniyavarn, T. Findakly, D. Booher, and J. Moen, “Domain inversion effects in Ti-LiNbO3 Integrated optical Devices,” Appl. Phys. Lett., vol. 46, no. 10, pp. 933–935, 1985.
[81] P. L. Waveguide et al., “Noncritical quasi-phase-matched Second,” IEEE J. Sel. Areas Commun., vol. 30, no. 12, pp. 2953–2960, 1994.
[82] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain reversal in LiNbO3 crystals using High-voltage Atomic Force Microscopy,” Appl. Phys. Lett., vol. 85, no. 3, pp. 452–454, 2004.
[83] I. Camlibel, “Spontaneous polarization measurements in several ferroelectric Oxides using a Pulsed-field Method,” Journal of Applied Physics, vol. 40, no. 4. pp. 1690–1693, 1969.
[84] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R.Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B, vol. 12, no. 11, p. 2102, Nov. 1995.
[85] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett., vol. 22, no. 24, p. 1834, Dec. 1997.
[86] Y. Zhang, Y. Shih, C. Hsu, and L. Peng, “Quasi-phase-match double frequency of Green Laser Based on Lithium Niobate,” Taiwan Instrum. Reasearch Inst, vol. 24, no. 2, pp. 39–45, 2002.
[87] R. G. Batchko and R. Byer, “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by Single-pass Frequency Doubling of a Laser Diode in Backswitch-poled Lithium Niobate,” Opt. Lett., vol. 24, no. 18, p. 1293, 1999.
[88] J. W. Choi, J. H. Ro, D. K. Ko, and N. E. Yu, “Poling quality enhancement of PPLN devices using Negative Multiple Pulse Poling Method,” J. Opt. Soc. Korea, vol. 15, no. 2, pp. 182–186, 2011.
[89] J. Min-Ji, J. Oc-Yeub, K. Byeong-Joo, and C. Myoungsik, “Fabrication of periodically poled Lithium Niobate Crystal and Poling-Quality Evaluation by Diffraction Measurement,” J. Korean Phys. Soc., vol. 47, no. 92, p. 336, 2005.
[90] M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, “Diffusion-bonded stacks of periodically poled lithium niobate,” Opt. Lett., vol. 23, no. 9, p. 664, May 1998.
[91] B. Joo Kim et al., “Fabrication of thick periodically-poled Lithium Niobate Crystals by Standard Electric Field Poling and Direct Bonding,” J. Opt. Soc. Korea, vol. 14, no. 4, pp. 420–423, 2010.
[92] G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance,” PhD Thesis, July, pp. 1–98, 1998.
[93] K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, “Periodic poling of magnesium-oxide-doped lithium niobate,” J. Appl. Phys., vol. 91, no. 7, pp. 4528–4534, 2002.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86203-
dc.description.abstract微型化低頻天線的演進過程,往往有尺寸限制且伴隨著品質因子、頻寬的問題,研究者們除改變傳統電小天線的形狀,達到整體電流長度不變又能縮小體積的效果外,逐漸發展的機械式天線也成為近年鑽研的項目,其原理是透過應力致動壓電或壓磁材料,產生電磁輻射效果,但傳統壓電機械式天線的缺點是機械波與電磁波耦合量較低。近年來發展成熟的壓電超晶格成為微型化天線的方式,經由結構中週期性的調變,有著禁帶與通帶的特性,內部則有機械波波傳的聲子晶體、電磁波波傳的光子晶體,以及兩者耦合而成的極子,而本研究使用鈮酸鋰做為壓電超晶格天線的材料,經微機電製程使晶體結構產生週期性的正反兩種極化方向,透過機械波與電磁波的耦合性質激發出特定頻率的電磁波。
由於壓電超晶格的共振頻取於週期寬度,本論文將工作頻率設定在80 MHz,並探討改變鈮酸鋰晶片之厚度對其電磁輻射的影響,選用500 µm及1000 µm兩種不同厚度的晶片進行製作,極化方式採用高壓電極化法,極化時饋入電壓與材料的厚度成正比,為解決極化過程所發生的金屬電極造成之電場集中與縱向極化深度不足等問題,進行光罩改良等製程相關研究,接著使用膜厚儀、光學顯微鏡以及電子顯微鏡進行表面與剖面檢測,確認極化深度與範圍,確立晶片極化的完成度。
基於壓電超晶格的機械波與電磁波的耦合效應,針對設定頻率附近的頻段進行遠場量測,比較之週期極化鈮酸鋰晶片尺度包含3吋晶片以及經切割後的12 mm × 10 mm微型晶片,量測方式以網路分析儀的S11、S21以及頻譜分析儀在80 MHz的輻射效率為主,結果顯示厚度為1000 µm之鈮酸鋰晶片表面積與厚度為500 µm的相同,但在80MHz附近有著較高的電磁輻射接收能力,除驗證壓電超晶格可以有效率的耦合內部機械能與電磁能以及發射和接收電磁輻射的能力,也因厚度變為兩倍,其電磁輻射接收能力有約2.5倍的增幅,有助於改善微型化天線效率不足的問題。
zh_TW
dc.description.abstractThe evolution of miniaturized low-frequency antennas is often limited in size and accompanied by quality factor and bandwidth problems. In addition to changing the shape of traditional electric small antennas to achieve the effect of maintaining the overall current length and reducing the volume at the same time. Mechanical antenna has also become a research project in recent years. The principle is to generate a dipole potential difference through applied stress on piezoelectric or piezoelectric materials, so that can achieve the effect of the antenna. However, the disadvantage of mechanical antenna is the electromechanical coupling is weak. In recent years, piezoelectric superlattice has become a way of miniaturized antenna. Through periodic modulation in the structure, it has band gap, and there are phononic and photon for mechanical wave and electromagnetic wave propagation. Lithium niobate is used as the material of the piezoelectric superlattice antenna, and the structure is produced in periodic positive and negative polarization through the MEMS process. Electromagnetic waves of specific frequencies are excited through the strong coupling of mechanical waves and electromagnetic waves.
Since the resonance frequency of the piezoelectric superlattice depends on the period width, the working frequency is set at 80 MHz in this thesis, and the influence of changing the thickness of the lithium niobate wafer on its electromagnetic radiation is discussed. We selected two different thicknesses, 500 µm and 1000 µm. The polarization method adopts the high-voltage electric polarization method. The feeding voltage is proportional to the thickness of the material during polarization. In order to solve the limitation of the wafer in polarization, the process-related research such as mask improvement is carried out, and then a film surface profiler is used , optical microscope and SEM for surface inspection of finished products to establish the completeness of wafer polarization.
Based on the electromechanical coupling effect of piezoelectric superlattices, microwave measurements are carried out for the frequency band near the set frequency. For the accuracy of the experiment, the measurement and comparison of the wafer size includes a complete 3-inch wafer and a cut 12 mm × 10 mm. The measurement method is mainly based on the S11 and S21 of the network analyzer and the radiation efficiency of the spectrum analyzer at 80 MHz. The results show that the lithium niobate wafer with a thickness of 1000 µm has a higher electromagnetic radiation efficiency. Piezoelectric superlattices can efficiently couple internal mechanical energy and electromagnetic energy, as well as the ability to emit and receive electromagnetic radiation, and also have different electromagnetic radiation efficiencies due to different thicknesses, which helps to improve the problem of insufficient efficiency of miniaturized antennas.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:42:05Z (GMT). No. of bitstreams: 1
U0001-3008202201564500.pdf: 8790580 bytes, checksum: 5386acb36029add226fb0e75ada25b66 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCONTENTS
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 研究動機與目標 1
1.2 文獻回顧 3
1.2.1 微型化天線 3
1.2.2 機械式共振天線(Mechanical Antenna) 5
1.2.3 週期結構壓電超晶格 10
1.2.4 週期極化鈮酸鋰之製程 16
Chapter 2 壓電超晶格理論 20
2.1 壓電超晶格極子理論 20
2.1.1 壓電超晶格晶體簡介 20
2.1.2 壓電超晶格之統御方程式 20
2.2 一維無限域之週期性極化鈮酸鋰的波傳現象 22
2.2.1 週期性壓電超晶格的一維頻帶結構 22
2.2.2 頻散曲線中電磁能與機械能的分布關係 28
Chapter 3 壓電超晶格極子天線製程 34
3.1 鈮酸鋰(LiNbO3)的材料特性 34
3.2 週期鈮酸鋰之微機電製程 35
3.2.1 光罩設計 37
3.2.2 晶片前置洗淨作業與鍍膜 43
3.2.3 第一步黃光微影(電極鋪設) 44
3.2.4 第二部黃光顯影(開窗) 45
3.3 週期鈮酸鋰之極化 47
3.3.1 極化前置作業(夾具與O-ring) 47
3.3.2 高壓電鈮酸鋰週期極化 48
3.3.3 極化情形比較 50
3.3.4 高壓電極化電路架構 52
3.3.5 極化之高壓電檢測與模擬 55
3.4 極化週期檢驗 58
3.4.1 鈮酸鋰成品外觀比較 59
3.4.2 x1方向之表面檢測 62
3.4.3 x2方向剖面檢測 66
Chapter 4 週期性極化鈮酸鋰天線的電磁輻射 69
4.1 三吋PPLN之反射係數S11量測 69
4.1.1 未極化之鈮酸鋰晶片的反射係數量測 70
4.1.2 已極化之三吋鈮酸鋰晶片在不同厚度下的反射係數量測 72
4.2 三吋PPLN之遠場穿透係數S21量測 74
4.2.1 利用網路分析儀量測遠場輻射 75
4.3 利用頻譜分析儀量測遠場輻射 78
4.3.1 三吋PPLN之遠場量測 79
4.3.2 均勻極化小尺寸PPLN之遠場量測 82
Chapter 5 結論與未來展望 91
5.1 結果分析 91
5.1.1 不同厚度鈮酸鋰微機電製程及極化比較 91
5.1.2 不同尺度的PPLN在80MHz的電磁接收能力 92
5.2 文獻比較 93
5.2.1 電磁輻射與接收功率 93
5.2.2 週期極化鈮酸鋰比較與應用 93
5.3 未來展望 94
參考文獻 96
-
dc.language.isozh_TW-
dc.subject極子zh_TW
dc.subject鈮酸鋰晶片厚度zh_TW
dc.subject電偶極矩長度zh_TW
dc.subject微型化天線zh_TW
dc.subject極子zh_TW
dc.subject壓電超晶格zh_TW
dc.subject鈮酸鋰晶片厚度zh_TW
dc.subject電偶極矩長度zh_TW
dc.subject微型化天線zh_TW
dc.subject壓電超晶格zh_TW
dc.subjectthickness of lithium niobateen
dc.subjectpiezoelectric superlatticesen
dc.subjectthickness of lithium niobateen
dc.subjectpiezoelectric superlatticesen
dc.subjectpolesen
dc.subjectelectric dipole moment lengthen
dc.subjectminiaturized antennasen
dc.subjectminiaturized antennasen
dc.subjectpolesen
dc.subjectelectric dipole moment lengthen
dc.title增強壓電超晶格極子天線之電磁輻射能力zh_TW
dc.titleEnhancement of Electromagnetic Radiation of Piezoelectric Superlattice Antennasen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周元昉;莊嘉揚zh_TW
dc.contributor.oralexamcommitteeYuan-Fang Chou;Jia-Yang Juangen
dc.subject.keyword壓電超晶格,極子,微型化天線,電偶極矩長度,鈮酸鋰晶片厚度,zh_TW
dc.subject.keywordpiezoelectric superlattices,poles,miniaturized antennas,electric dipole moment length,thickness of lithium niobate,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202202956-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-09-01-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf8.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved