請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86180完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(Chih-Chung Yang) | |
| dc.contributor.author | Zong-Han Li | en |
| dc.contributor.author | 李宗翰 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:40:47Z | - |
| dc.date.copyright | 2022-09-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-05 | |
| dc.identifier.citation | 1. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22, 3076 (2010). 2. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, “Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance,” ACS Appl. Mater. Interfaces 8, 18189 (2016). 3. J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22, A511 (2014). 4. H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23, 32504 (2015). 5. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22, 602 (2010). 6. J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure,” Appl. Phys. Express 8, 094001 (2015). 7. H. V. Demira, S. Nizamoglub, T. Erdemb, E. Mutluguna, N. Gaponikc, and A Eychmuller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6, 632 (2011). 8. T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946). 9. L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem. 47, 819 (1978). 10. M. Achermann, M. A. Petruska, A. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429, 642 (2004). 11. J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure,” Appl. Phys. Express 8, 094001 (2015). 12. U. Kaiser, D. Jimenez de Aberasturi, M. Vazquez-Gonzalez, C. Carrillo-Carrion, T. Niebling, J. W. Parak, and W. Heimbrodt, “Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies,” J. Appl. Phys. 117, 024701 (2015). 13. A. C. Kuriakose, V. P. N. Nampoori, and S. Thomas, “Energy transfer kinetics in basic fuchsin dye sensitized CdS quantum dots,” Mater. Chem. Phys. 242, 122560 (2020). 14. K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, and I. L. Medintz, “Self-assembled quantum dot-sensitized multivalent DNA photonic wires,” J. Am. Chem. Soc. 132, 18177 (2010). 15. S. Mandal, M. G. Iglesias, M. Ince, T. Torres, and N. V. Tkachenko, “Photoinduced energy transfer in ZnCdSeS quantum dot phthalocyanines hybrids,” ACS Omega 3, 10048 (2018). 16. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112, 064303 (2012). 17. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys. 53, 383002 (2020). 18. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C 117, 16890-16895 (2013). 19. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106, 241603 (2015). 20. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118, 29492-29498 (2014). 21. R. Radzali, N. Zainal, F. K. Yam, and Z. Hassan, “Characteristics of porous GaN prepared by KOH photoelectrochemical etching,” Mater. Res. Innovations 18, S6-412-416 (2014). 22. W. J. Hsu, K. T. Chen, W. C. Huang, C. J. Wu, J. J. Dai, S. H. Chen, and C. F. Lin, “InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer,” Opt. Express 24, 11601-11610 (2016). 23. Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, and F. Yun, “Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED,” Photon. Res. 8, 806-811 (2020). 24. C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. D: Appl. Phys. 46, 365102 (2013). 25. S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films,” ACS Appl. Mater. Interfaces 5, 11074-11079 (2013). 26. Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology 22, 045603 (2011). 27. J. H. Kang, M. Ebaid, J. K. Lee, T. Jeong, and S. W. Ryu, “Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter,” ACS Appl. Mater. Interfaces 6, 8683-8687 (2014). 28. H. Yang, X. Xi, Z. Yu, H. Cao, J. Li, S. Lin, Z. Ma, and L. Zhao, “Light modulation and water splitting enhancement using a composite porous GaN structure,” ACS Appl. Mater. Interfaces 10, 5492-5497 (2018). 29. K. Maeda and K. Domen, “Photocatalytic water splitting: Recent progress and future challenges,” J. Phys. Chem. Lett. 1, 2655-2661 (2010). 30. C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example,” ACS Photon. 2, 980-986 (2015). 31. M. Zhang, Y. Liu, J. Wang, and J. Tang, “Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose,” Microchimica Acta 186, DOI: 10.1007/s00604-018-3172-0 (2019). 32. A. Najar, M. Gerland, and M. Jouiad, “Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy,” J. Appl. Phys. 111, 093513 (2012). 33. J. H. Kang, B. Li, T. Zhao, M. Ali Johar, C. C. Lin, Y. H. Fang, W. H. Kuo, K. L. Liang, S. Hu, S. W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890-30895 (2020). 34. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119-129. (1999) 35. C. T. Chen, K. H. Wu, C. F. Lu, and F. Shieh, “An inkjet printed stripe-type color filter of liquid crystal display,” J. Micromech. Microeng. 20(5), 055004. (2010). 36. K. Park, Y. Lee, J. Lee, and C. J. Han, “Quantum Dot Color Filter and Micro LED,” In: Micro Light Emitting Diode: Fabrication and Devices Springer Singapore 19-32. (2021). 37. J. Bae, S. Lee, J. Ahn, J. H. Kim, M. Wajahat, W. S. Chang, S. Y. Yoon, J. T. Kim, S. K. Seol, and J. Pyo, “3D-printed quantum dot nanopixels,” ACS Nano 14(9), 10993-11001 (2020). 38. J. Yang, M. K. Choi, U. J. Yang, S. Y. Kim, Y. S. Kim, J. H. Kim, D. H. Kim, and T. Hyeon, “Toward full-color electroluminescent quantum dot displays,” Nano Lett. 21(1), 26-33 (2020). 39. Y. Li, J. Tao, Q. Wang, Y. Zhao, Y. Sun, P. Li, J. Lv, Y. Qin, W. Wang, Q. Zeng and J. Liang, “Microfluidics-based quantum dot color conversion layers for full-color micro-LED display,” Appl. Phys. Lett. 118(17), 173501 (2021). 40. J. Zhao, L. Chen, D. Li, Z. Shi, P. Liu, Z. Yao, H. Yang, T. Zou, B. Zhao, X. Zhang, H. Zhou, Y. Yang, W. Cao, X. Yan, S. Zhang, and X. W. Sun, “Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition,” Nat. Commun. 12(1), 1-8 (2021). 41. C. A. J. Lin, R. A. Sperling, J. K. Li, T. Y. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4, 334-341 (2008). 42. A. F. Halbus, T. S. Horozov, and V. N. Paunov, “Surface-modified zinc oxide nanoparticles for antialgal and antiyeast applications,” ACS Appl. Nano Mater. 3(1), 440-451 (2020). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86180 | - |
| dc.description.abstract | 本論文內我們展示一種用於製作彩色顯示像素的新技術。我們將膠體量子點混入電解質溶液,再於電化學蝕刻過程中將量子點填入表面下的多孔隙結構內。我們可以透過控制電流導通的路徑來決定電化學蝕刻反應的區域,利用這個特性我們先製作可以使電流相互導通的像素區域,然後進行電化學蝕刻,填入特定顏色量子點到這些像素的多孔隙結構。我們設計圖案後,利用光學微影和感應耦合式電漿反應離子蝕刻製程在藍光量子井的模板上製作特定電流導通區域後,進行兩階段的電化學蝕刻製程,一次使用混合紅光量子點的電解質溶液,另一次使用混合綠光量子點的電解質溶液,分別製作能發紅光及綠光的像素,而沒有電流流通的區域則不會產生孔隙結構,可以當作發藍光的像素。在最優化的電化學蝕刻條件後,我們展示多像素的彩色陣列成品,它們都具有高顏色對比度。這技術提供製作彩色顯示像素的新方法,只要先在表面製作相互絕緣的特定區域像素陣列圖形,然後進行兩次電化學蝕刻製程,就可以獲得彩色像素的陣列,具有製作簡單及低成本的優點。另外因為量子點填入奈米尺度的多孔隙結構內,可以經由奈米腔效應來提升量子點的發光效率。 | zh_TW |
| dc.description.abstract | A novel technique for fabricating color pixel arrays is demonstrated. Based on the developed method of electrochemical etching (ECE) with mixed colloidal quantum dots (QDs) in the electrolyte (KOH), we can use the electric current flow path to control the distributions of subsurface porous structure and inserted QDs. By electrically connecting the pixels of the same color, QDs of the designated color can be inserted into the subsurface porous structures in all those pixels. Through a two-stage ECE process with red-emitting QD (RQD) and then green-emitting QD (GQD) successively on a blue-emitting quantum well (QW) template, we can fabricate the red- and green-emitting pixels. Without current application and porous structure in the blue-emitting pixels, the QWs provides blue light. Multiple-pixel color arrays are demonstrated to gain a high color contrast. This technique of distributing QDs among pixels is simple and inexpensive. It only requires a patterning procedure and two-stage ECE processes. It also gains the advantage of efficient QD emission in a subsurface nano-porous structure. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:40:47Z (GMT). No. of bitstreams: 1 U0001-0209202212174200.pdf: 7312295 bytes, checksum: 5209d4e26b7fd9c8ccf2865be9523f76 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv Contents v List of Figure vii Chapter 1 Introduction 1 1.1 Color conversion of colloidal quantum dots for display application 1 1.2 GaN porous structures 2 1.3 Methods for distributing quantum dots among different pixels in a display panel 3 1.4 Research motivations 4 1.5 Thesis structure 5 Chapter 2 Epitaxial Structures and Sample Fabrication Methods 6 2.1 Epitaxial structures used for fabricating samples 6 2.2 Sample fabrication and measurement methods 7 Chapter 3 Optimization of Sample Fabrication Conditions 13 3.1 Optimization of applied voltage 13 3.2 Control of the surface charge of quantum dot 15 3.3 Optimization of quantum dot concentration 16 3.4 Optimization of electrolyte concentration 17 3.5 Testing the depth of the isolation etching 18 Chapter 4 Pixel Array Fabrication on Blue-emitting Quantum-well Structures 91 4.1 Testing quantum-well templates 91 4.2 Multiple-color pixel arrays 94 Chapter 5 Conclusions 120 References 121 | |
| dc.language.iso | en | |
| dc.subject | 表面下的多孔隙結構 | zh_TW |
| dc.subject | 彩色顯示 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 電化學蝕刻 | zh_TW |
| dc.subject | color pixel arrays | en |
| dc.subject | quantum dots | en |
| dc.subject | electrochemical etching | en |
| dc.subject | subsurface porous structure | en |
| dc.title | 以電化學蝕刻技術圖案化顯示畫素上光色轉換膠體量子點之分佈 | zh_TW |
| dc.title | Patterning Color-conversion Colloidal Quantum Dot Distribution among Display Pixels Based on an Electrochemical Etching Technique | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳育任(Yuh-Renn Wu),陳奕君(I-Chun Cheng),林建中(Chien-Chung Lin),黃建璋(Jian-Jang Huang) | |
| dc.subject.keyword | 彩色顯示,量子點,電化學蝕刻,表面下的多孔隙結構, | zh_TW |
| dc.subject.keyword | color pixel arrays,quantum dots,electrochemical etching,subsurface porous structure, | en |
| dc.relation.page | 127 | |
| dc.identifier.doi | 10.6342/NTU202203100 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-09-05 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0209202212174200.pdf | 7.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
