Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86135
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志(Ying-Chih Liao)
dc.contributor.authorHo-Shu Huangen
dc.contributor.author黃河樹zh_TW
dc.date.accessioned2023-03-19T23:38:31Z-
dc.date.copyright2022-09-16
dc.date.issued2022
dc.date.submitted2022-09-07
dc.identifier.citation1. Ambrosi, A. and M. Pumera, 3D-printing technologies for electrochemical applications. Chemical Society Reviews, 2016. 45(10): p. 2740-2755. 2. B.V., H. Additive manufacturing trend report 2021. 2021; Available from: https://www.hubs.com/get/trends/. 3. Inc, C.I.S. 3D Printing Technology Trends. 2022; Available from: https://reurl.cc/EpyD2A. 4. FRIED, S., 3D printing technologies for electronics. NIHON GAZO GAKKAISHI (Journal of the Imaging Society of Japan), 2017. 56(6): p. 617-620. 5. Roach, D.J., et al., The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing, 2019. 29: p. 100819. 6. Votzke, C., et al., 3D-printed liquid metal interconnects for stretchable electronics. IEEE Sensors Journal, 2019. 19(10): p. 3832-3840. 7. Wicker, R.B. and E.W. MacDonald, Multi-material, multi-technology stereolithography: This feature article covers a decade of research into tackling one of the major challenges of the stereolithography technique, which is including multiple materials in one construct. Virtual and Physical Prototyping, 2012. 7(3): p. 181-194. 8. Macdonald, E., et al., 3D printing for the rapid prototyping of structural electronics. IEEE access, 2014. 2: p. 234-242. 9. Espalin, D., et al., 3D Printing multifunctionality: structures with electronics. The International Journal of Advanced Manufacturing Technology, 2014. 72(5): p. 963-978. 10. Sun, K., et al., 3D printing of interdigitated Li‐Ion microbattery architectures. Advanced materials, 2013. 25(33): p. 4539-4543. 11. Maurel, A., et al. Highly loaded graphite-PLA composite based filaments for lithium-ion battery 3D-printing. in AiMES 2018 Meeting. 2018. 12. Chen, C., et al., 3D Printed High‐Loading Lithium‐Sulfur Battery Toward Wearable Energy Storage. Advanced Functional Materials, 2020. 30(10): p. 1909469. 13. Misra, A.K., J.E. Grady, and R. Carter, Additive manufacturing of aerospace propulsion components. 2015. 14. Toleos Jr, L.R., et al., Feasibility study for Fused Deposition Modeling (FDM) 3D-printed propellers for unmanned aerial vehicles. International Journal of Mechanical Engineering and Robotics Research, 2020. 9(4): p. 548-558. 15. Khaleed, H., et al., Novel approach to manufacture an AUV propeller by additive manufacturing and error analysis. Applied Sciences, 2019. 9(20): p. 4413. 16. Venezia, P. Digital Denture Evolution: CAD-CAM and 3D Printed Dentures. 2019; Available from: https://www.styleitaliano.org/digital-denture-evolution-cad-cam-3d-printed-dentures/ 17. Chen, T.-H., et al., Lattice microarchitecture for bone tissue engineering from calcium phosphate compared to titanium. Tissue Engineering Part A, 2018. 24(19-20): p. 1554-1561. 18. Carew, R.M., R.M. Morgan, and C. Rando, A preliminary investigation into the accuracy of 3D modeling and 3D printing in forensic anthropology evidence reconstruction. Journal of forensic sciences, 2019. 64(2): p. 342-352. 19. Leigh, S.J., et al., A simple, low-cost conductive composite material for 3D printing of electronic sensors. PloS one, 2012. 7(11): p. e49365. 20. Urrios, A., et al., 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on a Chip, 2016. 16(12): p. 2287-2294. 21. Pacewicz, K., A. Sobotka, and Ł. Gołek. Characteristic of materials for the 3D printed building constructions by additive printing. in MATEC Web of Conferences. 2018. EDP Sciences. 22. Montjoy, V. Can 3D Printing Reshape Residential Architecture as We Know It? 2020; Available from: https://www.archdaily.com/970937/can-3d-printing-reshape-residential-architecture-as-we-know-it. 23. Kumar, M.A., M. Khan, and S. Mishra, Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics. Materials Today: Proceedings, 2020. 27: p. 975-983. 24. Wojtyła, S., P. Klama, and T. Baran, Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Journal of occupational and environmental hygiene, 2017. 14(6): p. D80-D85. 25. Crump, S., Apparatus and method for creating three-dimensional objects (US Patent US5121329A). 1989. 26. Gibson, I., et al., Additive manufacturing technologies. Vol. 17. 2021: Springer. 27. Ramya, A. and S.L. Vanapalli, 3D printing technologies in various applications. International Journal of Mechanical Engineering and Technology, 2016. 7(3): p. 396-409. 28. Ferretti, P., et al., Relationship between FDM 3D printing parameters study: parameter optimization for lower defects. Polymers, 2021. 13(13): p. 2190. 29. Validating Isotropy in SLA 3D Printing. 2020; Available from: https://formlabs.com/blog/isotropy-in-SLA-3D-printing/. 30. Cesarano III, J. and P. Calvert, Freeforming objects with low-binder slurry. 2000. 31. Faes, M., et al., Extrusion-based 3D printing of ceramic components. Procedia Cirp, 2015. 28: p. 76-81. 32. Zhu, C., et al., Highly compressible 3D periodic graphene aerogel microlattices. Nature communications, 2015. 6(1): p. 1-8. 33. Meiners, W., K. Wissenbach, and A. Gasser, Selective laser sintering at melting temperature. 2001, Google Patents. 34. Sachs, E.M., et al., Three-dimensional printing techniques. 1993, Google Patents. 35. Bai, Y. and C.B. Williams, The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing. Nanotechnology, 2018. 29(39): p. 395706. 36. Shirazi, S.F.S., et al., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and technology of advanced materials, 2015. 37. Pires, R. SLA vs DLP: The Differences – Simply Explained. 2019; Available from: https://all3dp.com/2/dlp-vs-sla-3d-printing-technologies-shootout/. 38. Kodama, H., Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer. Review of scientific instruments, 1981. 52(11): p. 1770-1773. 39. Hull, C., Apparatus for production of three-dimensional objects by stereolithography (US 4575330 A). 1986. 40. Taormina, G., et al., 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. Journal of applied biomaterials & functional materials, 2018. 16(3): p. 151-160. 41. Zheng, S. What are SLA, DLP, and LCD resin 3d printers? What are their molding principles and differences? 2020; Available from: https://www.creality3dofficial.com/blogs/news/what-are-sla-dlp-and-lcd-resin-3d-printers-what-are-their-molding-principles-and-differencesSongyin 42. Parenti, M. DLP vs LCD 3D Printer: The Differences. 2022; Available from: https://all3dp.com/2/lcd-vs-dlp-3d-printing-technologies-compared/. 43. Schwalm, R., UV coatings: basics, recent developments and new applications. 2006: Elsevier. 44. Pagac, M., et al., A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing. Polymers, 2021. 13(4): p. 598. 45. Wikipedia: Photoresist. Available from: https://en.wikipedia.org/wiki/Photoresist. 46. Wired Chemist. Available from: https://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html. 47. Chemicals, C.S. 2003; Available from: https://gnusha.org/~nmz787/mems/unorganized/Photoinitiators%20for%20UV%20curing.pdf. 48. Liu, S., et al., Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing. European Polymer Journal, 2021. 147: p. 110300. 49. Abdallah, M., et al., In-silico based development of photoinitiators for 3D printing and composites: Search on the coumarin scaffold. Journal of Photochemistry and Photobiology A: Chemistry, 2020. 400: p. 112698. 50. Xu, Y., et al., Ketone derivatives as photoinitiators for both radical and cationic photopolymerizations under visible LED and application in 3D printing. European Polymer Journal, 2020. 132: p. 109737. 51. Abdallah, M., et al., Coumarins as powerful photosensitizers for the cationic polymerization of epoxy-silicones under near-UV and visible light and applications for 3D printing technology. Molecules, 2020. 25(9): p. 2063. 52. Kahveci, M.U., et al., Photoinitiated cationic polymerization of mono and divinyl ethers in aqueous medium using ytterbium triflate as lewis acid. Macromolecular Chemistry and Physics, 2008. 209(18): p. 1881-1886. 53. Mazumder, M.A.J., H. Sheardown, and A. Al-Ahmed, Functional Polymers. 2019: Springer. 54. Decker, C. and K. Moussa, Kinetic study of the cationic photopolymerization of epoxy monomers. Journal of Polymer Science Part A: Polymer Chemistry, 1990. 28(12): p. 3429-3443. 55. Decker, C., Photoinitiated crosslinking polymerisation. Progress in polymer science, 1996. 21(4): p. 593-650. 56. Koltzenburg, S., M. Maskos, and O. Nuyken, Polymer chemistry. 2017: Springer. 57. Bagheri, A. and J. Jin, Photopolymerization in 3D printing. ACS Applied Polymer Materials, 2019. 1(4): p. 593-611. 58. Quan, H., et al., Photo-curing 3D printing technique and its challenges. Bioactive Materials, 2020. 5(1): p. 110-115. 59. Ligon, S.C., et al., Polymers for 3D printing and customized additive manufacturing. Chemical reviews, 2017. 117(15): p. 10212-10290. 60. Wikipedia: Ploy(methyl acrylate). 2020; Available from: https://en.wikipedia.org/wiki/Poly(methyl_acrylate). 61. Park, J.-W., et al., Characteristic shrinkage evaluation of photocurable materials. Polymer Testing, 2016. 56: p. 344-353. 62. Chattopadhyay, D., S.S. Panda, and K. Raju, Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Progress in Organic Coatings, 2005. 54(1): p. 10-19. 63. Tsai, C.-W., et al., Synthesis of adamantane-containing methacrylate polymers: Characterization of thermal, mechanical, dielectric and optical properties. Materials Express, 2016. 6(3): p. 220-228. 64. Chen, T. and R. Kusy, Effect of methacrylic acid: methyl methacrylate monomer ratios on polymerization rates and properties of polymethyl methacrylates. Journal of biomedical materials research, 1997. 36(2): p. 190-199. 65. 王跃川, Photocurable resin composition (CN 1454933A). 2003. 66. LEE, J.S., Photo-curable Resin Compositions and Method of Using The Same in Three-dimensional Printing for Manufacturing Artificial Teeth and Denture Base (US 20140239527 A1). 2014. 67. Barszczewska-Rybarek, I.M., M.W. Chrószcz, and G. Chladek, Novel urethane-dimethacrylate monomers and compositions for use as matrices in dental restorative materials. International journal of molecular sciences, 2020. 21(7): p. 2644. 68. Wu, T., et al., 3D Printing of High‐Performance Isocyanate Ester Thermosets. Macromolecular Materials and Engineering, 2020. 305(11): p. 2000397. 69. Schimpf, V., et al., Polyfunctional acrylic non-isocyanate hydroxyurethanes as photocurable thermosets for 3D printing. Macromolecules, 2019. 52(9): p. 3288-3297. 70. Borrello, J., et al., 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Additive manufacturing, 2018. 23: p. 374-380. 71. Guo, Y., et al., Solvent-free and photocurable polyimide inks for 3D printing. Journal of Materials Chemistry A, 2017. 5(31): p. 16307-16314. 72. Voet, V.S., et al., Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS omega, 2018. 3(2): p. 1403-1408. 73. Chittavanich, P., K. Miller, and M. Soucek, A photo-curing study of a pigmented UV-curable alkyd. Progress in Organic Coatings, 2012. 73(4): p. 392-400. 74. Wang, K., et al., Photopolymerization of 1‐adamantyl acrylate pohotoinitiated by free radical photoinitiators. Journal of Applied Polymer Science, 2012. 123(1): p. 26-31. 75. Guo, Y. and S. Lin, Synthesis and characterization of UV-cured epoxy acrylate resin with cyclic methacrylate as diluents. Pigment & Resin Technology, 2020. 76. Jacobs, P.F., Rapid prototyping & manufacturing: fundamentals of stereolithography. 1992: Society of Manufacturing Engineers. 77. Hofstetter, C., et al., Combining cure depth and cure degree, a new way to fully characterize novel photopolymers. Additive Manufacturing, 2018. 24: p. 166-172. 78. Guerra, A.J., et al., Optimization of photocrosslinkable resin components and 3D printing process parameters. Acta Biomaterialia, 2019. 97: p. 154-161. 79. Guit, J., et al., Photopolymer resins with biobased methacrylates based on soybean oil for stereolithography. ACS Applied Polymer Materials, 2020. 2(2): p. 949-957. 80. Andrzejewska, E., Photopolymerization kinetics of multifunctional monomers. Progress in polymer science, 2001. 26(4): p. 605-665. 81. Lalevée, J., et al., Role of the medium on the reactivity of cleavable photoinitiators in photopolymerization reactions. Macromolecules, 2006. 39(5): p. 1872-1879. 82. Landau, L.D., et al., Electrodynamics of continuous media. Vol. 8. 2013: elsevier. 83. GeoSci, E. Dielectric Permittivity. 2018; Available from: https://em.geosci.xyz/content/physical_properties/dielectric_permittivity/index.html. 84. Levitskaya, T. and B. Sternberg, Parameters describing the material behavior in an electromagnetic field, in Electrical Spectroscopy of Earth Materials. 2019, Elsevier Amsterdam. p. p 3. 85. Tereshchenko, O., F.J.K. Buesink, and F.B.J. Leferink. An overview of the techniques for measuring the dielectric properties of materials. in 2011 XXXth URSI General Assembly and Scientific Symposium. 2011. Ieee. 86. Wikipedia: Dielectric Loss. 2022; Available from: https://en.wikipedia.org/wiki/Dielectric_loss. 87. Biezen, M.v. Physics - E&M: Maxwell's Equations (20 of 30) Differential Form of Ampere's Law: 1. 2014; Available from: https://www.youtube.com/watch?v=mj2ahFjnpmY. 88. Ellingson, S.W. Loss Tangent. Available from: https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book%3A_Electromagnetics_II_(Ellingson)/03%3A_Wave_Propagation_in_General_Media/3.05%3A_Loss_Tangent. 89. Chen, L.-F., et al., Microwave electronics: measurement and materials characterization. 2004: John Wiley & Sons. 90. El Khaled, D., et al., Dielectric spectroscopy in biomaterials: Agrophysics. Materials, 2016. 9(5): p. 310. 91. Josh, M., Dielectric permittivity: A petrophysical parameter for shales. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 2014. 55(04): p. 319-332. 92. Marathe, R.C.N. Dielectric P. 2021; Available from: https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Dielectric_Polarization. 93. Clausius Mossotti Equation | Static relative Permittivity | Polarization of Dielectric Materials. 2012; Available from: http://physics-ref.blogspot.com/2012/12/. 94. Wikipedia: Clausius–Mossotti relation. 2022; Available from: https://en.wikipedia.org/wiki/Clausius%E2%80%93Mossotti_relation. 95. William D. Brown, D.H., Vimal Desai, and M. Jamal Deen. DIELECTRICS. 2006; Available from: https://knowledge.electrochem.org/encycl/art-d01-dielectrics.htm. 96. Dielectric Materials. Available from: https://slidetodoc.com/dielectric-materials-prerequisite-capacitive-behavior-polarization-dielectric-loss-2/. 97. Dipole Relaxation. Available from: https://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_3/backbone/r3_3_2.html. 98. Silaghi, M.A., Dielectric Material. 2012: BoD–Books on Demand. 99. Ahmad, Z., Polymer dielectric materials, in Dielectric material. 2012, IntechOpen. 100. Mittal, A. PCB Substrates: Knowing Your Dielectric Material’s Properties. 2015; Available from: https://www.protoexpress.com/blog/pcb-substrates-knowing-dielectric-materials-properties/. 101. Gotro, J. Polymers in Electronic Packaging Part One: Introduction to Mold Compounds. 2017; Available from: https://polymerinnovationblog.com/polymers-electronic-packaging-part-one-introduction-mold-compounds/. 102. Wang, L. How to Calculate Trace Length from Time Delay Value for High-speed Signals. Available from: https://www.zuken.com/en/blog/how-to-calculate-trace-length-from-time-delay-value-for-high-speed-signals/. 103. Chapter 12. S-Parameters for Signal Integrity Applications. Available from: https://ebookreading.net/view/book/EB9780137035069_14.html. 104. Metgron 6 Data Sheet. 2021; Available from: https://industrial.panasonic.com/content/data/EM/PDF/ipcdatasheet_R-5775.pdf. 105. Rogers Antenna Dielectric Material Data Sheet. Available from: https://rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4700-antenna-grade-laminates. 106. 從時域與頻域評估傳輸線特性. Available from: https://www.oldfriend.url.tw/SI_PI/ansys_ch_s-para.html. 107. Geng, Z., et al., Synthesis and characterization of novel adamantane‐based copoly (aryl ether ketone) s with low dielectric constants. Polymer international, 2014. 63(2): p. 333-337. 108. Chua, J. and Q. Tu, A molecular dynamics study of crosslinked phthalonitrile polymers: the effect of crosslink density on thermomechanical and dielectric properties. Polymers, 2018. 10(1): p. 64. 109. Wikipedia: Solvent. 2022; Available from: https://en.wikipedia.org/wiki/Solvent. 110. Gotro, J. The Winding Road to Renewable Thermoset Polymers Part 5: Epoxies. 2013; Available from: https://polymerinnovationblog.com/the-winding-road-to-renewable-thermoset-polymers-part-5-epoxies/. 111. Guo, J., et al., MPPE/SEBS composites with low dielectric loss for high-frequency copper clad laminates applications. Polymers, 2020. 12(9): p. 1875. 112. Gutierrez, C., et al. Cubesat fabrication through additive manufacturing and micro-dispensing. in International Symposium on Microelectronics. 2011. International Microelectronics Assembly and Packaging Society. 113. ITEQ IT-180 Data Sheet. 2014; Available from: http://www.iteq.com.tw/wp-content/uploads/2016/09/IT-180-datasheet-201409.pdf. 114. 何志松與王維廷, 探討聚酯壓克力樹脂配方對性質之影響. Journal of Science and Engineering Technology, 2017. 13(2): p. 33-43. 115. Banik, I., et al., Effect of electron beam irradiation on the dielectric properties of fluorocarbon rubber. Die Angewandte Makromolekulare Chemie, 1998. 263(1): p. 5-13. 116. Ali, K.I., et al., Reactive diluent effect on properties of UV‐cured films. Journal of applied polymer science, 1994. 54(3): p. 309-315. 117. Murphy, A.R., et al., Tailored emulsion-templated porous polymer scaffolds for iPSC-derived human neural precursor cell culture. Polymer Chemistry, 2017. 8(43): p. 6617-6627. 118. Kong, L., et al., Low k epoxy resin containing cycloaliphatic hydrocarbon with high crosslinking density. Journal of Applied Polymer Science, 2016. 133(21). 119. Acar, H.Y., et al., Evaluation of the Spacer Effect on Adamantane-Containing Vinyl Polymer T g's. Macromolecules, 2000. 33(10): p. 3855-3859. 120. Kong, L., et al., Adamantyl-based benzocyclobutene low-k polymers with good physical properties and excellent planarity. Journal of Materials Chemistry C, 2015. 3(14): p. 3364-3370. 121. Ishizone, T., et al., Anionic Polymerizations of 1‐Adamantyl Methacrylate and 3‐Methacryloyloxy‐1, 1′‐Biadamantane. Macromolecular Chemistry and Physics, 2002. 203(16): p. 2375-2384. 122. Kavitha, A.A. and N.K. Singha, High temperature resistant tailor‐made poly (meth) acrylates bearing adamantyl group via atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(21): p. 7101-7113. 123. Nakano, Y., E. Sato, and A. Matsumoto, Synthesis and thermal, optical, and mechanical properties of sequence‐controlled poly (1‐adamantyl acrylate)‐block‐poly (n‐butyl acrylate) containing polar side group. Journal of Polymer Science Part A: Polymer Chemistry, 2014. 52(20): p. 2899-2910. 124. Lu, W., et al., Poly (1-adamantyl acrylate): living anionic polymerization, block copolymerization, and thermal properties. Macromolecules, 2016. 49(24): p. 9406-9414. 125. Nozaki, K. and E. Yano, New protective groups in alicyclic methacrylate polymers for 193-nm resists. Journal of Photopolymer Science and Technology, 1997. 10(4): p. 545-550. 126. Cheng, Y., et al., Hydrolysis and condensation of a benzocyclobutene-functionalized precursor for the synthesis of high performance low-K polymers. RSC advances, 2017. 7(24): p. 14406-14412. 127. Mathews, A.S., I. Kim, and C.S. Ha, Fully aliphatic polyimides from adamantane‐based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant. Journal of applied polymer science, 2006. 102(4): p. 3316-3326. 128. Torres-Knoop, A., et al., Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach. Soft matter, 2018. 14(17): p. 3404-3414. 129. Pothan, L.A., Z. Oommen, and S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and technology, 2003. 63(2): p. 283-293. 130. An Introduction to Reflow Soldering and Soldering Methods. 2019; Available from: https://www.azom.com/article.aspx?ArticleID=17451. 131. Ratna, D., Thermal properties of thermosets, in thermosets. 2012, Elsevier. p. 62-91. 132. EMC EM-528 Data Sheet. 2021; Available from: https://www.emctw.com/upload/website/item/EM-528%20Datasheet%2020210818_21082511292.pdf. 133. Qualcomm: Everything you need to know about 5G. Available from: https://www.qualcomm.com/5g/what-is-5g. 134. Micron: 5G, AI, and the Coming Mobile Revolution. Available from: https://www.micron.com/insight/5g-ai-and-the-coming-mobile-revolution. 135. Steers, S. 29% of global population to have 5G by the end of 2021. 2021; Available from: https://mobile-magazine.com/5g-and-iot/29-global-population-have-5g-end-2021. 136. Murara, B. IMT-2020 NETWORK HIGH LEVEL REQUIREMENTS, HOW AFRICAN COUNTRIES CAN COPE. 2020; Available from: https://www.itu.int/en/ITU-T/Workshops-and-Seminars/standardization/20170402/Documents/S2_4.%20Presentation_IMT%202020%20Requirements-how%20developing%20countries%20can%20cope.pdf. 137. Aguayo, A. Opportunities for High Frequency Materials in 5G and the IoT. 2017; Available from: https://www.microwavejournal.com/articles/27688-opportunities-for-high-frequency-materials-in-5g-and-the-iot. 138. Sleiman, D. RF and 5G new radio: top 5 questions answered. 2021; Available from: https://www.exfo.com/es/recursos/blog/rf-5g-new-radio-top-5-questions/. 139. 曲建仲. 【認識5G專題報導5-3】為什麼5G使用毫米波(mmWave) 6G使用太赫茲(THz). 2021; Available from: https://www.digitimes.com.tw/iot/article.asp?cat=158&id=599799. 140. Zhou, Y., Material Foundation for Future 5G Technology. Accounts of Materials Research, 2021. 2(5): p. 306-310. 141. 賴德隆, PCB產業介紹及5G之影響. TEJ信用風險評估專刊3月號, 2020. 142. 馮欣仁. PCB拔刀再戰. 2021; Available from: https://ctee.com.tw/bookstore/magazine/261341.html. 143. Tehrani, B.K., B.S. Cook, and M.M. Tentzeris. Inkjet-printed 3D interconnects for millimeter-wave system-on-package solutions. in 2016 IEEE MTT-S International Microwave Symposium (IMS). 2016. IEEE. 144. Cohen, Z. How to Design an IoT Device for 3D Printing. 2019; Available from: https://www.nano-di.com/blog/2019-how-to-design-an-iot-device-for-3d-printing. 145. Helena, D., et al., The Use of 3D printing technology for manufacturing metal antennas in the 5G/IoT context. Sensors, 2021. 21(10): p. 3321. 146. Su, Z., et al. 3D Printed Near-isotropic Asymmetric Dipole Antenna-on-Package for IoT Applications. in 2018 IEEE Indian Conference on Antennas and Propogation (InCAP). 2018. IEEE. 147. Tehrani, B.K., et al. E-band characterization of 3D-printed dielectrics for fully-printed millimeter-wave wireless system packaging. in 2017 IEEE MTT-S International Microwave Symposium (IMS). 2017. IEEE. 148. Peters, E.N., S.M. Fisher, and H. Guo, Polyphenylene Ether Macromonomers. XI. Use in Nonepoxy Printed Wiring Boards. 2012, SABIC. 149. Lebedevaite, M. and J. Ostrauskaite. Photocross-linked bio-based polymers for potential application in optical 3D printing. in CGPM 2020: First international conference on “green” polymer materials, 05-25 November 2020, online. 2020. MDPI. 150. Morgan, D.L., et al., Toxicity of divinylbenzene-55 for B6C3F1 mice in a two-week inhalation study. Toxicological Sciences, 1997. 39(2): p. 89-100. 151. Steldinger, H., et al., Activated carbon in the third dimension—3D printing of a tuned porous carbon. Advanced Science, 2019. 6(19): p. 1901340. 152. Steldinger, H., 3D Printing of Activated Carbon and Exemplary Application as Adsorbent in the Electric Swing Adsorption. 2020. 153. Roy, K., S. Kar, and R.N. Das, Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. 2015: Academic press. 154. Bonino, C.A., et al., Real-time in situ rheology of alginate hydrogel photocrosslinking. Soft Matter, 2011. 7(24): p. 11510-11517. 155. Chiou, B.-S. and S.A. Khan, Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers. Macromolecules, 1997. 30(23): p. 7322-7328. 156. Brill, R.P. and G.R. Palmese, An investigation of vinyl–ester styrene bulk copolymerization cure kinetics using Fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 2000. 76(10): p. 1572-1582. 157. Kianfar, P., et al., Enhancing properties and water resistance of PEO-based electrospun nanofibrous membranes by photo-crosslinking. Journal of Materials Science, 2021. 56(2): p. 1879-1896. 158. Roberson, D.A., et al., Microstructural and process characterization of conductive traces printed from Ag particulate inks. Materials, 2011. 4(6): p. 963-979. 159. Scordo, G., et al., A novel highly electrically conductive composite resin for stereolithography. Materials Today Communications, 2019. 19: p. 12-17. 160. Fantino, E., et al., 3D printing of conductive complex structures with in situ generation of silver nanoparticles. Advanced Materials, 2016. 28(19): p. 3712-3717. 161. Tsai, S.-C., et al., Photo Curable Resin for 3D Printed Conductive Structures. Additive Manufacturing, 2022: p. 102590. 162. Korhonen, H., et al., Fabrication of graphene‐based 3D structures by stereolithography. physica status solidi (a), 2016. 213(4): p. 982-985. 163. Lee, J.W., I.H. Lee, and D.-W. Cho, Development of micro-stereolithography technology using metal powder. Microelectronic engineering, 2006. 83(4-9): p. 1253-1256. 164. Zhang, D., et al., Fabrication of highly conductive graphene flexible circuits by 3D printing. Synthetic Metals, 2016. 217: p. 79-86. 165. Chueh, B., et al. Adhesion promotion technology for semi-additive process. in 2008 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference. 2008. IEEE. 166. Park, M.S., et al., Optimization of desmear process for high adhesion of insulating film in printed circuit boards (PCBs) via Taguchi method. International journal of adhesion and adhesives, 2011. 31(6): p. 466-472. 167. Cheng, Y.-C., et al., Desmearing of FR4 Epoxy Resin Using NMP-Based Sweller. Journal of electronic materials, 2009. 38(11): p. 2368-2375. 168. Impedance Calculator. Available from: https://www.mantaro.com/resources/impedance-calculator.htm. 169. Liang, M., et al. 3D printed multilayer microstrip line structure with vertical transition toward integrated systems. in 2015 IEEE MTT-S International Microwave Symposium. 2015. IEEE. 170. Kim, C., et al., 3D printed electronics with high performance, multi-layered electrical interconnect. IEEE Access, 2017. 5: p. 25286-25294. 171. Why s11 is taken below -10dB? 2017; Available from: https://www.quora.com/Why-s11-is-taken-below-10dB. 172. Lee, S., et al. Development of FCBGA substrate with low Dk/Df material based on automotive reliability conditions. in 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC). 2019. IEEE.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86135-
dc.description.abstract由3D列印技術代表的積層製造概念藉由極其簡短的製程步驟,製造時間與極少的材料浪費已經對傳統製造業產生劃時代的改變。在許多3D列印技術中,光固化3D列印機的成本最低,但是其壓克力樹脂列印成品擁有最好的列印精確性與最強的層間結合力因此吸引了越來越多學術界與產業界資源投入探究其可能的應用領域,其中包括客製化電子產品製造。本論文旨在改進光固化3D列印應用在電子產品製造的兩大缺點,即低介電性以及在非平面物體上形成純銅線路的高難度挑戰。在第二章中帶有非極性以及立體障礙功能之金剛烷結構的雙官能基壓克力單體被混入三官能基交聯劑單體組成的樹脂浴中成功的印出無翹曲與裂痕的薄膜以及高解析度的物體,其介電常數與損耗因子也大幅地降低(2.77/0.02 @ 10GHz)。本章節對單與雙官能基具有立體障礙功能的壓克力單體在交聯劑高分子網路結構中之交聯行為差異性的探討為接續低介電損耗因子的光固化3D列印樹脂配方研發提供了理論基礎。為了降低光固化壓克力高分子結構先天的高介電損耗因子,非極性分子二乙烯基苯被導入壓克力樹酯中以大幅增強其介電性能,在第三章的研究應用電腦模擬選出立體障礙更強的單官能基壓克力單體甲基丙烯酸酯雙環戊烷與二乙烯基苯及三官能基交聯劑單體形成新的3D光固化列印樹脂配方,以此配方所列印出來的物體不僅完全沒有翹曲與裂痕,並且其列印精確度相比市售光固化樹脂毫不遜色,更重要的是其展現了極低的介電常數與損耗因子(2.63/0.007 @ 10GHz)與優異的熱穩定性CTE (α1/α2= 49/75 ppm/oC),此表現已相當於用在生產5G傳輸用印刷電路板的低耗損等級(Low Loss)基板材料。最後在第四章,光固化3D列印物體表面的溝槽設計成功讓電鍍銅線路在其非平面表面上形成,應用此方式以及第二章與第三章所開發之樹脂配方分別被用來製造曲面電路板以及訊號完整性測試用微帶線(Micro-strip Line)測試板。兩者分別通過無鉛製程用迴焊爐測試以及展現非常優良的高頻訊號完整性 (S21 <2dB up to 4.6GHz),此研究成果成功地展現光固化3D列印在製造高品質與信賴性電子裝置的潛力。zh_TW
dc.description.abstractAdditive manufacturing (AM) materialized by 3D printing technology has been reshaping the traditional manufacturing industry with its extremely simple process flow, short fabrication time and little material waste. Among a variety of 3D printing techniques, liquid-crystal display (LCD) 3D printer has the lowest machine cost but its products from acrylate-based resin photo-polymerization exhibits the highest accuracy and strongest layer to layer adhesion. Therefore, more and more industrial and research endeavors are devoted to exploring its potential applications including customized electronic device fabrication. This dissertation aims at solving LCD 3D printing technique’s biggest disadvantages in electronic device fabrication: poor dielectric properties for prevailing polymethyl methacrylate/methyl acrylic acid-based resin and difficulty of pure Cu trace formation on printed object’s nonplanar surface. At first (Chapter 2), steric hindering acrylate monomers with non-polar adamantyl structures were added into tri-functional cross-linker resin bath to successfully eradicate its higher crack and warpage tendency, enhance its dielectric constant (Dk) and dissipation factor (Df) performances (2.77/0.02 @ 10GHz) without compromising the excellent thermal stability (coefficient of thermal expansion (CTE) α1/α2= 66/83ppm/oC). Mono and bi-functional steric hindering monomer’s cross-linking behaviors were studied to pave the way for the following resin formula development. In Chapter 3, the non-polar divinyl benzene (DVB) monomer was introduced to reduce acrylate polymer’s inherent high polarity. The mono-functional monomer with the strongest steric hindering was selected based on software simulation to form an optimum resin formula together with DVB and cross-linker. The printed samples demonstrated very low Dk/Df (2.63/0.007 @ 10GHz) and CTE (α1/α2= 49/75ppm/oC), comparable to Tier 4 mid-loss PCB dielectric materials utilized to produce PCB for 5G applications. Lastly, trench structures on LCD 3D printed boards were design in Chapter 4 to enables reliable pure Cu circuit to be formed on the non-planar printed polymer surface. With trench type Cu circuit, curvilinear circuit board and micro-strip line test vehicle fabricated by resin formulas developed from Chapter 2 and 3 passed reflow (lead free temperature profile) and exhibited excellent signal integrity (<2dB S21) up to 4.6GHz respectively, demonstrating LCD 3D printing technique’s potential in reliable, high quality electronic device fabrication.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:38:31Z (GMT). No. of bitstreams: 1
U0001-0609202217175100.pdf: 9862107 bytes, checksum: 1d8cb1ed522468de9a3db44360dee8d1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 ii 誌謝 iii 中文摘要 iv Abstract vi Table of Contents ix List of Figures xi List of Tables xv List of Symbols xvi List of Abbreviations xviii Chapter 1 Introduction 1 1.1 3D Printing Technology Overview 1 1.1.1 3D Printing Mechanism & Market & Application 1 1.1.2 3D Printing Technology Classification 9 1.2 LCD 3D Printing Photo-polymer Formula Development 19 1.2.1 Photo-polymerization Mechanism & Applications 19 1.2.2 Photo-polymer Chemistry 21 1.2.3 SLA/LCD 3D Printing Kinetics 41 1.3 Polymer’s Dk & Df reduction 50 1.3.1 Dielectric Theory 50 1.3.2 Low Dk/Df polymer development in electronics applications 58 1.4 Structure of the Dissertation 66 Chapter 2 Acrylate Based LCD 3D Printing Resin Formula Development for Thermal and Dielectric Properties Enhancement 69 2.1 Background 69 2.2 Experimental 73 2.2.1 Materials 73 2.2.2 LCD 3D Printing 75 2.2.3 LCD 3D Printed Sample Characterization 76 2.3 Results and Discussion 79 2.3.1 LCD 3D Printing from commercial and pure TMPTA resin 79 2.3.2 LCD 3D Printability of TMPTA Resin with HDDA Additions 80 2.3.3 LCD 3D Printability of TMPTA Resin with ADMA & ADDA Additions ......................................................................................................80 2.3.4 Gel Fraction and Elongation at Break Characterizations 82 2.3.5 Thermal Properties Characterization 84 2.3.6 Dielectric Properties Characterization 89 2.3.7 TMPTA Polymer Modifications by ADMA and ADDA Additions ......................................................................................................91 2.4 Curvilinear Circuit Board LCD 3D Printing 95 2.5 Conclusion 98 Chapter 3 Development of Low Dissipation Factor (Df) LCD 3D Printing Resin 100 3.1 Background 100 3.2 Experimental 106 3.2.1 Materials 106 3.2.2 LCD 3D Printing 107 3.2.3 LCD 3D Printed Sample Characterization 108 3.3 Monomer Steric Hindrance Comparison by Computer Simulation 111 3.4 Results and Discussion 114 3.4.1 LCD 3D Printed Sample Dk/Df Characterization 114 3.4.2 Rheology Characterization 118 3.4.3 ATR-FTIR and Polymeric Characterization 119 3.4.4 Thermal Stability & Mechanical Properties Characterization 121 3.5 LCD 3D printing characterization 124 3.6 Conclusion 126 Chapter 4 LCD 3D printed Device with Cu Circuit for Thermal & Electrical Characterizations 127 4.1 Background 127 4.2 Curvilinear Circuit Board Metallization 133 4.3 Signal Integrity Characterization of LCD 3D Printed Micro-strip Board ............................................................................................................135 4.4 Conclusion 144 Chapter 5 Conclusion and Future Research Directions 145 References 149 Personal Information 161
dc.language.isoen
dc.title低介電常數與低損耗因子之光固化3D列印樹脂開發zh_TW
dc.titleDevelopment of Low Dielectric Constant and Dissipation Factor Resin for Liquid-crystal Display 3D Printingen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee高振宏(C Robert Kao),陳賢燁(Hsien-Yeh Chen),游佳欣(Jiashing Yu),葛明德(Ming-Der Ger),游孟潔(Meng-Jey Youh),劉道奇(Tao-chi Liu),王金勝(Jason Wang)
dc.subject.keyword光固化3D列印,光固化交聯反應,具立體障礙功能之單體,介電常數,介電損耗因子,溝槽結構銅線路,zh_TW
dc.subject.keywordLCD 3D printing,photo-polymerization,steric hindering monomer,dielectric constant,dissipation factor,trench type Cu circuit,en
dc.relation.page162
dc.identifier.doi10.6342/NTU202203204
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-09-16-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0609202217175100.pdf9.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved