請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86130完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許添本(Tien-Pen Hsu) | |
| dc.contributor.author | Ming-Chun Chang | en |
| dc.contributor.author | 張名鈞 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:38:16Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-29 | |
| dc.identifier.citation | [1] Aarts, L., & van Schagen, I. (2006). Driving speed and the risk of road crashes: A review. Accident Analysis and Prevention, 38(2), pp. 215-224. [2] AASHTO. (2010). Highway Safety Manual 1st Edition. American Association of State Highway and Transportation Officials. [3] Agent, K. (1973). Evaluation of the High-Accident Location Spot-Improvement Program in Kentucky. Kentucky Transportation Center Research Report 1188. [4] Bertini, R.L., & Tantiyanugulchai, S. (2004). Transit Buses as Traffic Probes: Use of Geolocation Data for Empirical Evaluation. Transportation Research Record, 1870(1), pp. 35-45. [5] California Department of Transportation. (2007). State Highway Congestion Monitoring Program (HICOMP): Annual Data Compilation. [6] Chung, C.C., & Gartner, N.H. (1973). Acceleration noise as a measure of effectiveness in the operation of traffic control system. [7] Dodge, Y. (2008). Spearman Rank Correlation Coefficient. In The Concise Encyclopedia of Statistics (pp. 502–505). Springer. [8] Eboli, L., Mazzulla, G., & Pungillo, G. (2016). Combining speed and acceleration to define car users’ safe or unsafe driving behaviour. Transportation research part C: emerging technologies, 68, pp. 113-125. [9] Esri. (2020). How Kernel Density works ArcMap 10.8. Retrieved from ArcGIS Desktop Documentation. [10] Hydén, C. (1987). The development of a method for traffic safety evaluation: the Swedish traffic conflict onflict technique. [11] Laughland, J.C., Haefner, L.E., Hall, J.W., & Clough, D.R. (1975). Methods for Evaluating Highway Safety Improvements. NCHRP Report 162. [12] Laureshyn, A., Svensson, Å., & Hydén, C. (2010). Evaluation of traffic safety, based on micro-level behavioural data: Theoretical. Accident Analysis and Prevention, 42(6), pp. 1637-1646. [13] Litman, T. (2007). Developing indicators for comprehensive and sustainable transport planning. Transportation research record, 2017(1), pp. 10-15. [14] Matsuo, K., Chigai, N., Chattha, M.I., & Sugiki, N. (2022). Vulnerable road user safety evaluation using probe vehicle data with collision warning information. Accident Analysis and Prevention, 165. [15] Moore, II, J.E., Cho, S., Basu, A., & Mezger, D.B. (2001). Use of Los Angeles Freeway Service Patrol Vehicles as Probe Vehicles. UC Berkeley: California Partners for Advanced Transportation Technology. [16] Morin, D. (1967). Application of Statistical Concepts to Accident Data. Highway Research Record, 188, pp. 72-81. [17] MR, I. S., Hamid, H., Hwa, L. T., & Farhan, A. (2014). Identification of hazardous road sections: crash data versus composite index method. International Journal of Engineering and Technology, 6(6). [18] Nilsson, G. (2004). Traffic Safety Dimensions and the Power Model to Describe the Effect of Speed on Safety. [19] Persaud, B. (2001). Statistical Methods in Highway Safety Analysis. NCHRP Synthesis of Highway Practice 295. [20] Sanwal, K., & Walrand, J. (1995). Vehicles As Probes. UC Berkeley: California Partners for Advanced Transportation Technology. [21] Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv. [22] Silverman, B. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall. [23] Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72-101. [24] Stipancic, J., Miranda-Moreno, L., & Saunier, N. (2018). Vehicle manoeuvers as surrogate safety measures: Extracting data from the gps-enabled smartphones of regular drivers. Accident Analysis & Prevention, 115, pp. 160-169. [25] Stokes, R.W., & Mutabazi, M.I. (1996). Rate-Quality Control Method of Identifying Hazardous Road Locations. Transportation Research Record, 1542(1), pp. 44-48. [26] Svensson, Å., & Hydén, C. (2006). Estimating the severity of safety related behaviour. Accident Analysis and Prevention, 38(2), pp. 379-85. [27] Zegeer, C. (1982). Highway Accident Ananlysis System. NCHRP Synthesis of Highway Practice 91. [28] Zito, R., D'Este, G., & Taylor, M.A.P. (1995). Global positioning systems in the time domain: How useful a tool for intelligent vehicle-highway systems? Transportation Research Part C: Emerging Technologies, 3(4), pp. 193-209. [29] 洪郁冠. (2015). 混合車流下車流安全參數之研究. 臺灣大學土木工程學研究所學位論文. [30] 許添本、蒙以亨、劉培森、黃暉慈、張太乙、李芊、賴易聖、林謙、廖彥程. (2021). 聯網智慧機車安全暨共享場域試驗研究計畫. 交通部. [31] 許添本、劉錦鴻. (2020). 車聯網技術應用於交叉口機車安全警示系統的設置成效分析. 中華民國運輸學會2020年會暨學術論文國際研討會論文集. 第五冊, 頁 353-379. 中華民國運輸學會. [32] 陳惠國、邱裕鈞、朱致遠. (2017). 交通工程(2版). 五南圖書. [33] 黃國平. (1982). 混合車流二維座標模擬模式之建立及驗證. 臺灣大學土木工程學研究所學位論文. [34] 運輸研究所. (1993). 易肇事地點改善作業技術參考手冊. [35] 運輸研究所. (2019). 2020年版運輸政策白皮書(套書)-總論及七分冊. [36] 運輸研究所. (2021). 第 38 期臺灣地區易肇事路段改善計畫. [37] 運輸計劃委員會. (1982). 台灣地區道路交通事故分析及建立電腦資訊系統之研究. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86130 | - |
| dc.description.abstract | 傳統交通安全評估與易肇事地點判定皆依據歷史事故資料作為研究的基礎,且歷史事故資料蒐集期間至少為一年,而歷史事故就意味著憾事往往已經發生。相較於事故資料,替代安全指標提出以衝突的層級取代碰撞資料進行安全分析或評估,可以在短期間蒐集到足夠資料,替代安全指標已然能取代或補充事故資料來對交通事件建立危險程度評估。 在資料獲取上,本研究首先提出以聯網機車作為交交通探針車輛。將配備有傳輸感應裝置的機車投入研究範圍內交通系統中,透過行駛過程以探查交通系統的運作狀況,最終將其實時回傳的行駛資料用作為交通安全評估的可靠數據。 本研究旨在藉由機車探針車資料建立替代安全指標,以評估道路環境安全性。先提取適用機車探針車之替代性安全指標,並建立複合替代安全指標,再則是以各替代性安全指標對比於歷史事故發生的相關性驗證。於研究中提出的替代安全指標有:第85百分位速率、加速擾度、急減速事件、異常加減速事件、異常偏移事件,而複合替代安全指標便是以主成分分析的結果得出,能涵蓋上述五者的單一指標。 在空間中,對比急減速事件與事故的空間相關性結果顯示,兩者具高度相關,表示兩者在空間分布上具有明顯的重疊性。此外,在驗證替代安全指標與事故資料的相關性,本研究以事故數前高的道路交叉為目標,並以本研究提出的各替代安全指標、複合替代安全指標對照事故件數做相關分析與檢定。結果顯示,複合替代安全指標有最高相關性,與過去事故的相關程度也達到中度相關,表示該指標能夠以機車行駛行為反映道路交叉環境的安全性。 | zh_TW |
| dc.description.abstract | Traditional traffic safety assessment and accident-prone location determination are based on historical accident data, and the period of collecting historical accident data is at least one year, and historical accidents mean that regrettable incidents have often occurred. Compared with accident data, the surrogate safety measure (SSM) was proposed to replace crash data with conflict levels for safety analysis or evaluation. Sufficient data can be collected in a short period so that the alternative safety indicators can replace or supplement the accident data to create a safety assessment of the hazard level of a traffic event. In terms of data acquisition, the study first proposes to use the motorcycle as the traffic probe vehicle. Motorcycles equipped with a transmission sensor are put into the traffic system in the study area, and the traffic system operation is investigated through the riding process, and the real-time data is finally used as reliable data for traffic safety assessment. The purpose of the study is to establish SSMs to assess the safety of the road environment by using motorcycle probe vehicle data. The SSMs for motorcycles were first extracted, and the composite surrogate safety measure (CSSM) was established, and then we validated the relevance of each measure against the historical accidents. The SSMs proposed in the study are: 85th percentile velocity, acceleration noise, hard deceleration event, abnormal acceleration/deceleration event, and abnormal offset event, and the CSSM is a single indicator that can cover the above five by principal component analysis. In the spatial context, the spatial correlation results of comparing hard deceleration events and accidents showed a high correlation, indicating a significant overlap in spatial distribution between the two. In addition, to verify the correlation between the SSMs and the accident data, the road intersections with high accident numbers were targeted, and each SSM and the composite alternative safety indicator proposed in this study were used to correlate with the number of accidents. The results showed that the CSSM had the highest correlation and a moderate correlation with accident numbers, indicating that the measurement can reflect the safety of road intersection environment from the probe motorcycle data. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:38:16Z (GMT). No. of bitstreams: 1 U0001-2809202214075100.pdf: 3888950 bytes, checksum: c9a6225a03b7bacb78429c0b493e3082 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍 4 1.4 研究內容與流程 5 第二章 文獻回顧 7 2.1 探針車定義與相關研究 7 2.2 易肇事地點判定方法與流程 9 2.2.1 易肇事地點判定方法回顧 9 2.2.2 現行易肇事地點判定流程 15 2.3 替代性安全指標應用 18 2.3.1 行駛速率 19 2.3.2 加速度 21 2.3.3 加速擾度 22 2.3.4 複合指標 22 第三章 研究方法 24 3.1 替代性安全指標建立 24 3.1.1 平均速率與第85百分位速率 24 3.1.2 異常加速度事件 24 3.1.3 加速擾度 26 3.2 空間核密度分析 27 3.3 主成分分析 28 3.4 斯皮爾曼等級相關係數 32 第四章 資料蒐集與處理分析 34 4.1 機車探針車資料 34 4.1.1 機車探針車資料蒐集 34 4.1.2 機車探針車資料處理 36 4.2 道路空間圖資蒐集與處理 39 4.3 事故資料蒐集與處理 43 第五章 研究分析與結果 45 5.1 替代性安全指標與事故分布分析 45 5.2 替代性安全指標與事故相關性驗證分析 50 5.2.1 道路交叉選擇與切分 51 5.2.2 替代性安全指標與複合指標 55 5.2.3 斯皮爾曼等級相關性 65 第六章 結論與建議 71 6.1 研究結論 71 6.2 應用建議 72 6.3 後續研究建議 72 參考資料 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 替代安全指標 | zh_TW |
| dc.subject | 複合指標 | zh_TW |
| dc.subject | 探針車 | zh_TW |
| dc.subject | 車聯網 | zh_TW |
| dc.subject | 相關分析 | zh_TW |
| dc.subject | Correlation analysis | en |
| dc.subject | Composite index | en |
| dc.subject | Surrogate safety measure | en |
| dc.subject | Probe vehicle | en |
| dc.subject | Internet of Vehicle | en |
| dc.title | 機車探針車行駛資料與事故資料之相關性分析 | zh_TW |
| dc.title | Correlation analysis of motorcycle probe vehicle data and accident data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴以軒(Yi-Hsuan Lai),李明聰(Ming-Tsung Li) | |
| dc.subject.keyword | 車聯網,探針車,替代安全指標,複合指標,相關分析, | zh_TW |
| dc.subject.keyword | Internet of Vehicle,Probe vehicle,Surrogate safety measure,Composite index,Correlation analysis, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202204195 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2809202214075100.pdf | 3.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
