請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86125
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉俊麟(Chun-Lin Liu) | |
dc.contributor.author | Hou-Min Wang | en |
dc.contributor.author | 王厚閔 | zh_TW |
dc.date.accessioned | 2023-03-19T23:38:01Z | - |
dc.date.copyright | 2022-10-19 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-07 | |
dc.identifier.citation | [1] M. I. Skolnik, Introduction to Radar Systems, 3rd ed. Boston: McGraw-Hill Education, 2001. [2] M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed. New York: McGraw-Hill Education, 2014. [3] P. Meischner, Weather radar: principles and advanced applications. Springer Science & Business Media, 2005. [4] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars: A review of signal processing techniques,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 22–35, 2017. [5] F. Engels, P. Heidenreich, A. M. Zoubir, F. K. Jondral, and M. Wintermantel. “Advances in automotive radar: A framework on computationally efficient highresolution frequency estimation,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 36–46, 2017. [6] S. Haykin, A. Zia, I. Arasaratnam, and Y. Xue, “Cognitive tracking radar,” in 2010 IEEE Radar Conference, 2010, pp. 1467–1470. [7] D. D. Howard and M. Skolnik, “Tracking radar,” Radar handbook, pp. 18–43, 1990. [8] T. M. Hyltin, T. D. Fuchser, H. B. Tyson, and W. R. Regueiro, “Vehicular radar speedometer,” SAE Transactions, pp. 473–502, 1973. [9] D. McKeown and K. Siwiak, Ultra-wideband radio technology. John Wiley & Sons, 2005. [10] Y. Rahayu, T. A. Rahman, R. Ngah, and P. Hall, “Ultra wideband technology and its applications,” in 2008 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN ’08), 2008, pp. 1–5. [11] R. S. Kshetrimayum, “An introduction to UWB communication systems,” IEEE Potentials, vol. 28, no. 2, pp. 9–13, 2009. [12] J. D. Taylor, Introduction to Ultra-Wideband Radar Systems. CRC press, 2001. [13] ——, Ultrawideband radar: applications and design. CRC press, 2012. [14] T. W. Barrett, “History of ultra wideband communications and radar: Part ii, UWB radars and sensors,” Microwave Journal, vol. 44, no. 2, pp. 22–22, 2001. [15] X. Wang, A. Dinh, and D. Teng, “Radar sensing using ultra wideband –design and implementation,” in Ultra Wideband - Current Status and Future Trends, M. A. Matin, Ed. London, United Kingdom: IntechOpen, 2012, ch. 3. [Online]. Available: https://doi.org/10.5772/48587 [16] C.-C. Chen, M. Higgins, K. O’Neill, and R. Detsch, “Ultrawide-bandwidth fullypolarimetric ground penetrating radar classification of subsurface unexploded ordnance,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 6, pp. 1221–1230, 2001. [17] X. Xu and R. Narayanan, “FOPEN SAR imaging using UWB step-frequency and random noise waveforms,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1287–1300, 2001. [18] A. Yarovoy, L. Ligthart, J. Matuzas, and B. Levitas, “UWB radar for human being detection,” IEEE Aerospace and Electronic Systems Magazine, vol. 21, no. 3, pp. 10–14, 2006. [19] X. Shang, J. Liu, and J. Li, “Multiple object localization and vital sign monitoring using IR-UWB MIMO radar,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 6, pp. 4437–4450, 2020. [20] B. Zhao, L. Huang, J. Li, M. Liu, and J. Wang, “Deceptive SAR jamming based on 1-bit sampling and time-varying thresholds,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 3, pp. 939–950, 2018. [21] B. Zhao, L. Huang, and W. Bao, “One-bit SAR imaging based on single-frequency thresholds,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 7017–7032, 2019. [22] T. Zhang, J. Ren, C. Gianelli, and J. Li, “RFI mitigation for one-bit UWB radar systems,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 1545–1549. [23] T. Zhang, J. Ren, J. Li, L. H. Nguyen, and P. Stoica, “RFI mitigation for one-bit UWB radar systems,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–1, 2021. [24] ——, “Joint RFI mitigation and radar echo recovery for one-bit UWB radar,” Signal Processing, vol. 193, p. 108409, 2022. [25] T. Koutsoudis and L. A. Lovas, “RF interference suppression in ultrawideband radar receivers,” in Algorithms for Synthetic Aperture Radar Imagery II, vol. 2487. SPIE, 1995, pp. 107–118. [26] L. H. Nguyen and T. D. Tran, “Efficient and robust RFI extraction via sparse recovery,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2104–2117, 2016. [27] X. Shang, J. Li, and P. Stoica, “Weighted SPICE algorithms for range-Doppler imaging using one-bit automotive radar,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 1041–1054, 2021. [28] D. Malioutov, M. Cetin, and A. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005. [29] M. Richards, J. Scheer, J. Scheer, and W. Holm, Principles of Modern Radar: Basic Principles, Volume 1, ser. Electromagnetics and Radar. Institution of Engineering and Technology, 2010. [Online]. Available: https://books.google.com.tw/books?id=nD7tGAAACAAJ [30] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the detection of oil spills in satellite radar images,” Machine learning, vol. 30, no. 2, pp. 195–215, 1998. [31] S. Kingsley and S. Quegan, Understanding radar systems. SciTech Publishing, 1999, vol. 2. [32] A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased-array radar technology,” Lincoln Laboratory Journal, vol. 12, no. 2, pp. 321–340, 2000. [33] E. Brookner, “Phased-array radars,” Scientific American, vol. 252, no. 2, pp. 94–103, 1985. [34] J. Clarke, “Airborne early warning radar,” Proceedings of the IEEE, vol. 73, no. 2, pp. 312–324, 1985. [35] M. Soumekh, “Reconnaissance with ultra wideband UHF synthetic aperture radar,' IEEE Signal Processing Magazine, vol. 12, no. 4, pp. 21–40, 1995. [36] R. Hansford, “The development of shipborne navigational radar,” The Journal of Navigation, vol. 1, no. 2, pp. 118–147, 1948. [37] M. I. Skolnik, “An analysis of bistatic radar,” IRE Transactions on Aerospace and Navigational Electronics, vol. ANE-8, no. 1, pp. 19–27, 1961. [38] M.-G. Di Benedetto, UWB communication systems: a comprehensive overview. Hindawi Publishing Corporation, 2006. [39] U. R. C. of the IEEE Aerospace and E. S. Society, “IEEE Standard for Ultrawideband Radar Definitions,” IEEE Std 1672-2006, pp. 1–19, 2007. [40] F. C. Commission, “Revision of part 15 of the commission’s rules regarding ultrawideband transmission systems,” Tech. Rep., April 2002. [41] B. Le, T. Rondeau, J. Reed, and C. Bostian, “Analog-to-digital converters,” IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 69–77, 2005. [42] R. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539–550, 1999. [43] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” in 2008 42nd Annual Conference on Information Sciences and Systems, 2008, pp. 16–21. [44] R. Zhang, C. Li, J. Li, and G. Wang, “Range estimation and range-Doppler imaging using signed measurements in LFMCW radar,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 6, pp. 3531–3550, 2019. [45] G. Cappuccino, G. Cocorullo, P. Corsonello, and G. Schirinzi, “Design and demonstration of a real time processor for one-bit coded SAR signals,” IEE Proceedings-Radar, Sonar and Navigation, vol. 143, no. 4, pp. 261–267, 1996. [46] R. Walden, “Analog-to-digital converter technology comparison,” in Proceedings of 1994 IEEE GaAs IC Symposium, 1994, pp. 217–219. [47] A. B. Borzov, K. P. Likhoedenko, G. M. Seregin, and V. B. Suchkov, “Applications of short-range radars on the base of ultrashort pulse single chip,” in 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), 2017, pp. 461–464. [48] J. Mo, A. Alkhateeb, S. Abu-Surra, and R. W. Heath, “Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeoffs,” IEEE Transactions on Wireless Communications, vol. 16, no. 4, pp. 2274–2287, 2017. [49] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 794–816, 2017. [50] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The American Statistician, vol. 58, no. 1, pp. 30–37, 2004. [51] X. Luo, L. Ulander, J. Askne, G. Smith, and P. Frölind, “RFI suppression in ultrawideband SAR systems using LMS filters in frequency domain,” Electronics Letters, vol. 37, no. 4, p. 1, 2001. [52] H. Subbaram and K. Abend, “Interference suppression via orthogonal projections: a performance analysis,” IEEE Transactions on Antennas and Propagation, vol. 41, no. 9, pp. 1187–1194, 1993. [53] V. T. Vu, T. K. Sjögren, M. I. Pettersson, and L. Håkasson, “An approach to suppress RFI in ultrawideband low frequency SAR,” in 2010 IEEE Radar Conference, 2010, pp. 1381–1385. [54] J. Ren, T. Zhang, J. Li, L. H. Nguyen, and P. Stoica, “RFI mitigation for UWB radar via hyperparameter-free sparse SPICE methods,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 6, pp. 3105–3118, 2019. [55] P. Stoica, D. Zachariah, and J. Li, “Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation,” Digital Signal Processing, vol. 33, pp. 1–12, 2014. [56] P. Stoica, P. Babu, and J. Li, “New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 35–47, 2010. [57] P. Stoica and P. Babu, “SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation,” Signal Processing, vol. 92, no. 7, pp. 1580–1590, 2012. [58] X. Tan, W. Roberts, J. Li, and P. Stoica, “Sparse learning via iterative minimization with application to MIMO radar imaging,” IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 1088–1101, 2010. [59] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. B. Baggeroer, “Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1, pp. 425–443, 2010. [60] Z. Heinemann, G. Gerken, and G. von Hantelmann, “Using local grid refinement in a multiple-application reservoir simulator,” in SPE Reservoir Simulation Conference, vol. All Days, 11 1983. [61] J. Ren, T. Zhang, J. Li, and P. Stoica, “Sinusoidal parameter estimation from signed measurements via majorization–minimization based RELAX,” IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2173–2186, 2019. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86125 | - |
dc.description.abstract | 超寬頻(Ultrawideband, UWB)雷達系統是指發射訊號為極短脈衝且具有大頻寬特性的雷達系統。與具有高解析度量化水平的傳統超寬頻雷達系統相比,單位元超寬頻雷達系統具有一些優勢,包括降低計算時間和空間儲存成本、易於電路實現以及功耗更低。因此,在本論文中,我們主要討論單位元超寬頻雷達系統。 然而,在超寬頻雷達系統中應適當處理強射頻干擾 (Radio Frequency Interference, RFI)。 射頻干擾的存在大幅降低接收訊號的訊號與干擾加雜訊比(Signal-to-Interference-plus-Noise Ratio, SINR),且增加雷達回波恢復的難度。為了有效降低傳統超寬頻雷達系統中射頻干擾的影響,已經開發了許多方法,例如利用射頻干擾估計方法來提取射頻干擾來源和使用濾波技術抑制射頻干擾的來源。直到最近幾年,Tianyi Zhang 等人分別提出了兩種演算法來解決超寬頻雷達中如何抑制射頻干擾和恢復雷達回波的問題,特別是應用了單位元加權 SPICE 框架的演算法。與以往的 1bMMRELAX-1bBIC 和稀疏方法相結合的演算法相比,該演算法不僅可以有效減少計算時間,而且可以更準確地恢復雷達回波訊號。 本論文旨在估計單位元超寬頻雷達系統中期望目標的距離和相應回波訊號的增益。我們開發了一個基於單位元加權 SPICE 框架演算法的估計過程。此外,正如我們所觀察到的,單位元加權 SPICE 演算法的參數估計是利用均勻和精細的網格點來實現目的。因此,我們提出了一種動態網格細化方法,不僅有效地減少計算時間,而且保持恢復回波訊號的性能。在某些情況下,它的性能甚至優於原始架構。 此外,在單位元加權 SPICE 框架下,我們可以分別採用 IAA、LIKES、SLIM 和 SPICE 的權重使其具有不同的性能。在這裡,我們還找到一個新的權重具有更好恢復回波訊號的性能。我們稱這個新的權重選擇為1bCREEP。模擬結果中可以發現利用1bCREEP權重於新提出的架構中,總體上可以具有更好的距離和增益估計效果。 | zh_TW |
dc.description.abstract | Ultra-wideband (UWB) radar systems refer to radar systems whose transmitted signals are extremely short pulses and have large bandwidth properties. One-bit UWB radar systems have some advantages compared to conventional UWB radar systems with high-resolution quantization levels. These advantages include reduced computation time and space storage cost, more straightforward circuit implementation, and less power consumption. Therefore, in this thesis, we mainly discuss one-bit UWB radar systems. However, strong radio frequency interference (RFI) should be handled appropriately in UWB radar systems. The existence of RFI significantly reduces the signal-to-interference-plus-noise ratio (SINR) of the received signals and increases the difficulty of recovering radar echo. Many ways have been developed, such as extracting RFI sources based on RFI estimation methods and using filtering techniques to suppress RFI sources, to effectively reduce the impact of RFI in conventional UWB radar systems. In recent years, Tianyi Zhang et al. proposed two algorithms for RFI mitigation and radar echo recovery in one-bit UWB radar systems, especially the one-bit weighted SPICE framework algorithm. Compared to the previous algorithm that combined the 1bMMRELAX-1bBIC and the sparse method, the one-bit weighted SPICE framework algorithm can effectively reduce the computation time and recover radar echoes more accurately. This thesis aims to estimate the range of the desired target and the gain of the corresponding echo signal for one-bit UWB radar systems. We develop an estimation process based on the one-bit weighted SPICE framework-based algorithm. Besides, as we observed, the parameter estimation of the one-bit weighted SPICE framework-based algorithm utilizes uniform and fine grid points to achieve the goal. As a result, we propose a dynamic grid refinement method to effectively reduce computation time and maintain echo recovery performance. In some cases, it outperforms the original architecture. Furthermore, under the one-bit weighted SPICE framework, we can separately adopt the weight of IAA, LIKES, SLIM, and SPICE to make it perform differently. Here, we also obtain a new weight with better echo recovery performance. We call this new weight choice 1bCREEP. The simulation results show that the proposed architecture that uses the 1bCREEP weight can have a better range and gain estimation effect. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:38:01Z (GMT). No. of bitstreams: 1 U0001-3108202209113300.pdf: 16412305 bytes, checksum: a1e0795a57a7559ada1c9fb5744b0d28 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Chapter 1 Introduction 1 1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Preliminaries 9 2.1 Introduction to Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Monostatic Radar System . . . . . . . . . . . . . . . . . . . . . . . .12 2.1.2 Ultra-wideband Radar . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Properties of One-Bit Quantization . . . . . . . . . . . . . . . . . . . 15 2.2.1 One-bit Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Reasons to Use One-bit Quantization . . . . . . . . . . . . . . . . . 18 2.2.3 The Receiver of One-bit Radar System . . . . . . . . . . . . . . . . . 21 2.3 Majorization-Minimization Approach . . . . . . . . . . . . . . . . . . . 22 Chapter 3 Echo Signal Recovery via RFI Mitigation in One-Bit UWB Radar 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Terminology Interpretation . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Problem Statement and Data Model . . . . . . . . . . . . . . . . . . . 28 3.2 One-bit Weighted SPICE Framework . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Review of The Weighted SPICE Method and Its Extension . . . . . . . . 31 3.2.1.1 The Weighted SPICE Framework . . . . . . . . . . . . . . . . . . . . 32 3.2.1.2 Extending to the One-bit Case . . . . . . . . . . . . . . . . . . . 36 3.2.2 Applying to RFI Mitigation and Radar Echo Recovery . . . . . . . . . . 39 3.2.2.1 Preparation Work In Advance . . . . . . . . . . . . . . . . . . . . 41 3.2.2.2 Details of The Algorithm Applying The One-bit Weighted SPICE Framework . 43 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 4 Range Estimation of Extremely Low-resolution UWB Radar Systems via the One-Bit Weighted SPICE Framework . 49 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.2 Details of The Proposed Method . . . . . . . . . . . . . . . . . . . . 53 4.2.2.1 The One-bit Weighted SPICE Framework with the Proposed Weight . . . 53 4.2.2.2 Grid Refinement of the Matrix . . . . . . . . . . . . . . . . . . . 56 4.2.2.3 Range and Echo Gain Estimation of the Targets . . . . . . . . . . . 62 4.3 Simulation Results and Discussions . . . . . . . . . . . . . . . . . . . 66 4.3.1 Evaluation Metric and Implementation Details . . . . . . . . . . . . . 66 4.3.1.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.1.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.2.1 Target Points ON Both The Grid-Fixed Index and The Grid-Refined Index . 74 4.3.2.2 Target Points OFF The Grid-Fixed Index but ON The Grid-Refined Index . .85 4.3.2.3 Target Points ON The Grid-Fixed Index but OFF The Grid-Refined Index . .91 4.3.2.4 Target Points OFF Both The Grid-Fixed Index and The Grid-Refined Index .98 4.3.3 The Evidence of The Selected Parameters . . . . . . . . . . . . . . . . . 105 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Chapter 5 Conclusion 111 Chapter 6 Future Outlook 113 References 115 Appendix A — Negative Log-likelihood Function of Signed Measurement 123 Appendix B — Derivative of The MM-based Objective Function 127 B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 B.2 The derivation process . . . . . . . . . . . . . . . . . . . . . . . . . . 128 | |
dc.language.iso | en | |
dc.title | 基於加權 SPICE 架構發展單位元超寬頻雷達系統的距離及增益估測 | zh_TW |
dc.title | Range and Gain Estimation of One-Bit Ultra-Wideband Radar Systems via the Weighted SPICE Framework | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.advisor-orcid | 劉俊麟(0000-0003-3135-9684) | |
dc.contributor.oralexamcommittee | 馮世邁(See-May Phoong),蘇柏青(Borching Su) | |
dc.subject.keyword | 減少無線頻率干擾,單位元超寬頻雷達,復原稀疏雷達回波,距離估測,回波增益估測,網格細化,單位元加權 SPICE 架構, | zh_TW |
dc.subject.keyword | RFI mitigation,one-bit UWB radar,sparse radar echo recovery,range estimation,echo gain estimation,grid refinement,one-bit weighted SPICE framework, | en |
dc.relation.page | 130 | |
dc.identifier.doi | 10.6342/NTU202203001 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
dc.date.embargo-lift | 2027-09-07 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3108202209113300.pdf 此日期後於網路公開 2027-09-07 | 16.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。