請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86119
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡孟勳(Mong-Hsun Tsai) | |
dc.contributor.author | Cheng-Sheng Hsieh | en |
dc.contributor.author | 謝正陞 | zh_TW |
dc.date.accessioned | 2023-03-19T23:37:44Z | - |
dc.date.copyright | 2022-09-30 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-28 | |
dc.identifier.citation | Health Promotion Administration, T., Cancer registry annual report, 2019 December, 2021. Malhotra, J., et al., Risk factors for lung cancer worldwide. Eur Respir J, 2016. 48(3): p. 889-902. Rivera, G.A. and H. Wakelee, Lung cancer in never smokers. Adv Exp Med Biol, 2016. 893: p. 43-57. Schabath, M.B. and M.L. Cote, Cancer progress and priorities: lung cancer. Cancer Epidemiol Biomarkers Prev, 2019. 28(10): p. 1563-1579. de Groot, P. and R.F. Munden, Lung cancer epidemiology, risk factors, and prevention. Radiol Clin North Am, 2012. 50(5): p. 863-876. Lu, T.-P., et al., Identification of a novel biomarker, SEMA5A, for non–small cell lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers Prev, 2010. 19(10): p. 2590-2597. Health Promotion Administration, T. 109年18歲以上成人吸菸行為調查結果性別分析. May, 2022. P.Pfeifer, P.H.a.G., Patterns of p53 G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis, March 2001. 22(3): p. 367–374. Shigematsu, H., et al., Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst, 2005. 97(5): p. 339-346. Eberhard, D.A., et al., Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol, 2005. 23(25): p. 5900-5909. Yamamoto, H., et al., PIK3CA mutations and copy number gains in human lung cancers. Cancer Res, 2008. 68(17): p. 6913-6921. Wang, R., et al., Analysis of major known driver mutations and prognosis in resected adenosquamous lung carcinomas. J Thorac Oncol, 2014. 9(6): p. 760-768. Cheng, Y.F., et al., Esophageal squamous cell carcinoma and prognosis in Taiwan. Cancer Med, 2018. 7(9): p. 4193-4201. Huang, F.L. and S.J. Yu, Esophageal cancer: Risk factors, genetic association, and treatment. Asian J Surg, 2018. 41(3): p. 210-215. Chen, M.F., et al., Outcome of patients with esophageal cancer: a nationwide analysis. Ann Surg Oncol, 2013. 20(9): p. 3023-3030. Lee, C.H., et al., Independent and combined effects of alcohol intake, tobacco smoking and betel quid chewing on the risk of esophageal cancer in Taiwan. Int J Cancer, 2005. 113(3): p. 475-482. Bregni, G. and B. Beck, Toward targeted therapies in oesophageal cancers: an overview. Cancers (Basel), 2022. 14(6). Song, Y., et al., Identification of genomic alterations in oesophageal squamous cell cancer. Nature, 2014. 509(7498): p. 91-95. Lin, L., et al., Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4251-4256. Ismail, A., et al., Early G(1) cyclin-dependent kinases as prognostic markers and potential therapeutic targets in esophageal adenocarcinoma. Clin Cancer Res, 2011. 17(13): p. 4513-4522. Fathi, H., et al., An efficient cancer classification model using microarray and high-dimensional data. Comput Intell Neurosci, 2021. 2021. Broadhead, M.L., et al., Microarray: an instrument for cancer surgeons of the future? ANZ J Surg, 2010. 80(7-8): p. 531-536. Kamps, R., et al., Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci, 2017. 18(2). Chen, M. and H. Zhao, Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics, 2019. 13(1): p. 34. 周正中, 白., 微陣列生物晶片簡介及其應用. 科儀新知, 2002. 23(5): p. 5-13. Wang, L., IDENTIFICATION METHODS | DNA Hybridization and DNA Microarrays for Detection and Identification of Foodborne Bacterial Pathogens, in Encyclopedia of Food Microbiology. 2014. p. 310-317. Dufva, M., Introduction to microarray technology. Methods Mol Biol, 2009. 529: p. 1-22. 班仁知, 陳., 簡介微陣列在感染症之應用. 生物醫學, 2010. 3(2): p. 405-411. Morganti, S., et al., Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv Exp Med Biol, 2019. 1168: p. 9-30. 李曜珊, 簡介次世代定序技術及美國的法規管理. 當代醫藥法規月刊, September, 2017. 83. Crossley, B.M., et al., Guidelines for Sanger sequencing and molecular assay monitoring. J Vet Diagn, 2020. 32(6): p. 767-775. Pareek, C.S., R. Smoczynski, and A. Tretyn, Sequencing technologies and genome sequencing. J Appl Genet, 2011. 52(4): p. 413-435. Bunnik, E.M. and K.G. Le Roch, An introduction to functional genomics and systems biology. Adv Wound Care (New Rochelle), 2013. 2(9): p. 490-498. Leal, A., D. Sidransky, and M. Brait, Tissue and cell-free DNA-based epigenomic approaches for cancer detection. Clin Chem, 2020. 66(1): p. 105-116. Kustanovich, A., et al., Life and death of circulating cell-free DNA. Cancer Biol Ther, 2019. 20(8): p. 1057-1067. Desdouits, M., et al., Novel opportunities for NGS-based one health surveillance of foodborne viruses. One Health Outlook, 2020. 2: p. 14. Suarez-Ulloa, V., et al., Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs, 2013. 11(11): p. 4370-4389. Chiu, C.Y. and S.A. Miller, Clinical metagenomics. Nat Rev Genet, 2019. 20(6): p. 341-355. Dziewulska, A., A.M. Dobosz, and A. Dobrzyn, High-throughput approaches onto uncover (epi)genomic architecture of type 2 diabetes. Genes (Basel), 2018. 9(8). Appiasie, D., et al., “Multiomics” approaches to understand and treat COVID-19: mass spectrometry and next-generation sequencing. BioChem, 2021. 1(3): p. 210-237. Frese, K.S., H.A. Katus, and B. Meder, Next-generation sequencing: from understanding biology to personalized medicine. Biology (Basel), 2013. 2(1): p. 378-398. Ziqi Tao, A.S., Rui Li, Yiqiu Wang, Xin Wang, Jing Zhao, Microarray bioinformatics in cancer- a review. J BUON, 2017. 22(4): p. 838-843. Piyush B Madhamshettiwar, S.R.M., Melissa J Davis, Antonio Reverter, Mark A Ragan, Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med, May, 2012. Chong, C.R. and P.A. Janne, The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med, 2013. 19(11): p. 1389-1400. Xiaomin Liu, P.W., Caiyan Zhang, Zhongliang Ma, Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget, 2017. 8. Silwal-Pandit, L., A. Langerod, and A.L. Borresen-Dale, TP53 mutations in breast and ovarian cancer. Cold Spring Harb Perspect Med, 2017. 7(1). Mogi, A. and H. Kuwano, TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol, 2011. 2011. Sakurai, K., et al., CD36 expression on oral squamous cell carcinoma cells correlates with enhanced proliferation and migratory activity. Oral Dis, 2020. 26(4): p. 745-755. Yang, P., et al., Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett, 2018. 438: p. 76-85. Deng, M., et al., CD36 promotes the epithelial-mesenchymal transition and metastasis in cervical cancer by interacting with TGF-beta. J Transl Med, 2019. 17(1): p. 352. Wang, B., et al., Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. Nanotechnology, 2021. 32(39). Feng, W.W., et al., CD36-mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies. Cell Rep, 2019. 29(11): p. 3405-3420. Zhao, J., et al., Exogenous lipids promote the growth of breast cancer cells via CD36. Oncol Rep, 2017. 38(4): p. 2105-2115. Wang, J., et al., Correction for: CD36 upregulates DEK transcription and promotes cell migration and invasion via GSK-3beta/beta-catenin-mediated epithelial-to-mesenchymal transition in gastric cancer. Aging (Albany NY), 2022. 14(8): p. 3720-3721. Pan, J., et al., CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3beta/beta-catenin pathway. J Exp Clin Cancer Res, 2019. 38(1): p. 52. Jiang, M., et al., Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics, 2019. 9(18): p. 5359-5373. Ladanyi, A., et al., Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 2018. 37(17): p. 2285-2301. Kubo, M., et al., Impact of CD36 on chemoresistance in pancreatic ductal adenocarcinoma. Ann Surg Oncol, 2020. 27(2): p. 610-619. Luo, X., et al., The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis, 2021. 12(4): p. 328. Yoshida, T., et al., CD36 expression Is associated with cancer aggressiveness and energy source in esophageal squamous cell carcinoma. Ann Surg Oncol, 2021. 28(2): p. 1217-1227. Pei, L., et al., Discovering novel lung cancer associated antigens and the utilization of their autoantibodies in detection of lung cancer. Immunobiology, 2020. 225(2): p. 151891. Mehan, M.R., et al., Protein signature of lung cancer tissues. PLoS One, 2012. 7(4): p. e35157. Lv, M. and L. Wang, Comprehensive analysis of genes, pathways, and TFs in nonsmoking Taiwan females with lung cancer. Exp Lung Res, 2015. 41(2): p. 74-83. Chen, Y.J., et al., Prognostic and immunological role of CD36: A pan-cancer analysis. J Cancer, 2021. 12(16): p. 4762-4773. Hale, J.S., et al., Context dependent role of the CD36--thrombospondin--histidine-rich glycoprotein axis in tumor angiogenesis and growth. PLoS One, 2012. 7(7). Sun, Q., et al., Hypermethylated CD36 gene affected the progression of lung cancer. Gene, 2018. 678: p. 395-406. Julia Winter, S.J., Sarina Keller, Richard I. Gregory, Sven Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell biology, March, 2009. 11: p. 228–234. Zheng, B., et al., MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res, 2011. 17(24): p. 7574-7583. Wu, Z.S., et al., miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer, 2011. 117(13): p. 2842-2852. Wang, H., et al., MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis, 2011. 32(7): p. 1033-1042. Jiang, H., et al., MicroRNA663b mediates TAM resistance in breast cancer by modulating TP73 expression. Mol Med Rep, 2018. 18(1): p. 1120-1126. Chen, X., et al., miRNA-218-5p increases cell sensitivity by inhibiting PRKDC activity in radiation-resistant lung carcinoma cells. Thorac Cancer, 2021. 12(10): p. 1549-1557. Xiao, Q., et al., MicroRNA6753p promotes esophageal squamous cell cancer cell migration and invasion. Mol Med Rep, 2018. 18(4): p. 3631-3640. Lin, Z., et al., Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method. Sci Rep, 2020. 10(1): p. 20065. Gu, J., et al., Serum miR-331-3p predicts tumor recurrence in esophageal adenocarcinoma. Sci Rep, 2018. 8(1): p. 14006. Zhao, Y., et al., MicroRNA-125a-5p enhances the sensitivity of esophageal squamous cell carcinoma cells to cisplatin by suppressing the activation of the STAT3 signaling pathway. Int J Oncol, 2018. 53(2): p. 644-658. Lin, W.C., et al., miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2. Carcinogenesis, 2019. 40(7): p. 883-892. Fang, Y., et al., CD36 inhibits beta-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat Commun, 2019. 10(1): p. 3981. Rooda, I., et al., Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Sci Rep, 2020. 10(1): p. 2300. Chu YW, Y.P., Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW, Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17: p. 353-360. Cheng, Q., et al., Overexpression of CD36 in mammary fibroblasts suppresses colony growth in breast cancer cell lines. Biochem Biophys Res Commun, 2020. 526(1): p. 41-47. DeFilippis, R.A., et al., CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov, 2012. 2(9): p. 826-839. Simantov, R., M. Febbraio, and R.L. Silverstein, The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol, 2005. 24(1): p. 27-34. Nan, P., et al., Tumor-stroma TGF-beta1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin alphavbeta3/CD36-mediated activation of the MAPK pathway. Cancer Lett, 2022. 528: p. 59-75. Chen JJ, P.K., Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW, Yang PC, Global analysis of gene expression in invasion by a lung cancer model. Cancer Research, July 1, 2001. 61: p. 5223–5230. Wei, K., H.N. Nguyen, and M.B. Brenner, Fibroblast pathology in inflammatory diseases. J Clin Invest, 2021. 131(20). Barany, N., et al., Clinical relevance of circulating activin A and follistatin in small cell lung cancer. Lung Cancer, 2021. 161: p. 128-135. Marini KD, C.D., McCloy RA, Vaghjiani V, Gonzalez-Rajal A, Hastings JF, Chin V, Szczepny A, Kostyrko K, Marquez C, Jayasekara WSN, Alamgeer M, Boolell V, Han JZR, Waugh T, Lee HC, Oakes SR, Kumar B, Harrison CA, Hedger MP, Lorensuhewa N, Kita B, Barrow R, Robinson BW, de Kretser DM, Wu J, Ganju V, Sweet-Cordero EA, Burgess A, Martelotto LG, Rossello FJ, Cain JE, Watkins DN, Inhibition of activin signaling in lung adenocarcinoma increases the therapeutic index of platinum chemotherapy. Sci Transl Med, 2018 Jul 25. 10(451). Su, S.F., et al., DNA methylome and transcriptome landscapes of cancer-associated fibroblasts reveal a smoking-associated malignancy index. J Clin Invest, 2021. 131(16). Chang, Y.H., et al., Comparative secretome analyses using a hollow fiber culture system with label-free quantitative proteomics indicates the influence of PARK7 on cell proliferation and migration/invasion in lung adenocarcinoma. J Proteome Res, 2012. 11(11): p. 5167-5185. Kawazoe, T., et al., Autocrine leukemia inhibitory factor promotes esophageal squamous cell carcinoma progression via Src family kinase-dependent Yes-associated protein activation. Mol Cancer Res, 2020. 18(12): p. 1876-1888. Amy M. Buckley, N.L.-L., Susan A. Kennedy, Margaret R. Dunne, John J. Aird, Emma K. Foley, Niamh Clarke, Narayanasamy Ravi, Dermot O’Toole, John V. Reynolds, Breandán N. Kennedy and Jacintha O’Sullivan, Leukaemia inhibitory factor is associated with treatment resistance in oesophageal adenocarcinoma. Oncotarget, 2018. 9(72): p. 33634-33647. Zhao, Y., et al., A novel prognostic mRNA/miRNA signature for esophageal cancer and its immune landscape in cancer progression. Mol Oncol, 2021. 15(4): p. 1088-1109. Nie, J.H., et al., Roles of non-coding RNAs in normal human brain development, brain tumor, and neuropsychiatric disorders. Noncoding RNA, 2019. 5(2). Zhang, X., et al., LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biol Chem, 2019. 400(5): p. 663-675. Dou, Y., et al., Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep, 2016. 6: p. 37982. Wang, M., et al., Long non-coding RNA-CTD-2108O9.1 represses breast cancer metastasis by influencing leukemia inhibitory factor receptor. Cancer Sci, 2018. 109(6): p. 1764-1774. Zhao, J.H., et al., A novel long noncoding RNA-LOWEG is low expressed in gastric cancer and acts as a tumor suppressor by inhibiting cell invasion. J Cancer Res Clin Oncol, 2016. 142(3): p. 601-609. Ebert, M.S. and P.A. Sharp, MicroRNA sponges: progress and possibilities. RNA, 2010. 16(11): p. 2043-2050. Ebert, M.S. and P.A. Sharp, Emerging roles for natural microRNA sponges. Curr Biol, 2010. 20(19): p. 858-861. Misir, S., et al., Circular RNAs serve as miRNA sponges in breast cancer. Breast Cancer, 2020. 27(6): p. 1048-1057. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86119 | - |
dc.description.abstract | 根據政府歷年統計資料顯示,從70年代開始至今癌症是台灣十大死因之首且癌症發生數連年增加,因此目前癌症發生最新統計資料顯示,和西元2018年相比,西元2019年台灣罹癌個數增加最多的是肺癌,且不論在台灣男性以及在台灣女性肺癌癌症發生數位居前三,此外根據最新癌症死亡數統計指出在西元2021年死亡率最高的癌症是肺癌。然而有些癌症好發於台灣男性,在西元2019年十大癌症發生率性別比差異最大的癌症為食道癌,男性罹患食道癌的機率為女性的15倍。雖然已經有許多研究探討肺癌以及食道癌發生之相關細胞訊號途徑,但是癌症細胞訊號途徑調控很複雜,所以本研究會分別探討CD36以及miR-548ba對肺癌以及食道癌細胞癌化之機制。 實驗室先前已經針對肺癌患者進行研究指出相較於正常肺細胞,CD36低表現量可能在肺癌中扮演重要角色,因此本研究探討CD36低表現量於肺癌生長之影響及機制。首先我們發現CD36基因靜默(Silencing)會抑制CL1-0增生能力(Proliferation),然而CD36大量表現(Overexpression)不會改變CL1-5的增生能力,但CD36大量表現會抑制H1299的增生能力。在細胞遷移能力實驗當中,使用Transwell發現CD36基因靜默會促進CL1-0遷移能力(Migration),然而CD36大量表現不會改變CL1-5以及H1299的遷移能力。在細胞凋亡實驗(Cell Apoptosis Assay)當中,CD36基因靜默會降低CL1-0死亡速率,然而CD36大量表現不會改變CL1-5的死亡速率。最後CD36基因靜默會減少CL1-0吞噬之葡萄糖量以及抑制醣解作用(Glycolysis)活性。 除了基因之外,許多研究也指出小分子核醣核酸(microRNA, miRNA)在各種人類癌症中也扮演重要的角色。因此實驗室先前透過次世代定序(Next-Generation Sequencing, NGS)以及即時定量聚合酶連鎖反應(Real-Time Quantitative Polymerase Chain Reaction, QPCR)驗證後發現相較於正常食道細胞,miR-548ba高表現量可能在食道癌中扮演重要角色,因此本研究探討miR-548ba高表現量於食道癌生長之影響及機制。由實驗結果發現miR-548ba大量表現會促進CE81T的增生能力以及增加CE81T細胞群落數目,但不會改變CE81T遷移能力。接著使用預測miRNA目標基因的軟體以及即時定量聚合酶連鎖反應驗證的發現,MOB1B可能是miR-548ba的目標基因,然而MOB1B是否是miR-548ba的直接目標基因仍需後續實驗驗證。 綜合來看,首先CD36在不同肺癌細胞中所造成之細胞生理功能的影響也不同,此外miR-548ba會促進CE81T細胞增生能力,期望透過本研究能提供後人新的研究方向以找出新的肺癌以及食道癌致癌機制。 | zh_TW |
dc.description.abstract | According to the statistics released by government in the past few years, cancer is the majority of dead reason from 1980s to present in Taiwan. Moreover, the cancer incidence is increasing year after year. Based on the latest statistics of cancer incidence and cancer death released by the Health Promotion Administration in 2019 and 2021 respectively, lung cancer ranked the top three cancer incidence and cancer death in both gender in Taiwan. Additionally, the esophageal cancer incidence in male was fifteen times as much as the esophageal cancer incidence in female. Although most of cancer research focus on lung and esophageal carcinogenesis related cell signaling, the regulation of cancer cell signaling is complex. Thus, in this study, I would focus on the function of CD36 and miR-548ba in lung and esophageal carcinogenesis respectively. In our lab, previous study found that compared with normal lung cells, CD36 low expression may play an important role in lung cancer. Therefore, we investigated the regulatory mechanism of CD36 low expression in lung cancer. First, we found that CD36 silencing inhibited CL1-0 proliferation, whereas CD36 overexpression did not alter CL1-5 proliferation, but CD36 overexpression inhibited H1299 proliferation. Using Transwell, we found that CD36 silencing promoted CL1-0 migration, but CD36 overexpression did not change CL1-5 and H1299 migration. In cell apoptosis assays, CD36 silencing reduced the death rate of CL1-0, whereas CD36 overexpression did not alter the death rate of CL1-5. Finally, CD36 silencing reduced the amount of glucose consumption and inhibited glycolysis activity in CL1-0. Except for genes, many studies had also found that microRNAs (miRNAs) also play important roles in various human cancers. Therefore, in our lab previously found that the high expression of miR-548ba may play an important role in esophageal cancer compared with normal esophageal cells by next-generation sequencing and real-time quantitative polymerase chain reaction. Therefore, we investigated the regulatory mechanism of miR-548ba high expression in esophageal cancer. First, it was found that miR-548ba overexpression promoted CE81T proliferation and increases CE81T colony number, but did not change CE81T migration. Then, using the software for predicting miRNA target genes and the verification by real-time quantitative polymerase chain reaction and found that MOB1B may be the target gene of miR-548ba, but whether MOB1B is the direct target gene of miR-548ba still needs to be verified by subsequent experiments. Overall, my study indicated that CD36 had diverse effects on the physiological functions in different lung cancer cells, and miR-548ba could promote CE81T proliferation. Therefore, it is hoped that it can provide new aspects for researchers to find new lung and esophageal carcinogenesis mechanism in this study. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:37:44Z (GMT). No. of bitstreams: 1 U0001-2509202203504900.pdf: 2106257 bytes, checksum: 6f97d328ad9ec43370461064cbebbcdb (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄 致謝 i 摘要 ii Abstract iv 目錄 vii 圖目錄 x 表目錄 xi 1.前言 1 1.1台灣肺癌及食道癌現況以及其介紹 1 1.2高通量技術介紹以及其應用 2 1.2.1去氧核醣核酸微陣列介紹及應用 2 1.2.2次世代定序介紹以及應用 5 1.2.3高通量技術挑選基因之策略以及後續分析 7 1.3基因在癌症中所扮演的角色 8 1.3.1 CD36在癌症中所扮演的腳色 8 1.3.2小分子核醣核酸介紹 9 1.3.3小分子核醣核酸在癌症所扮演的角色 9 1.3.4小分子核醣核酸在食道癌所扮演的角色 10 2.基本原理以及目的 11 3.材料與方法 12 3.1培養液配置 12 3.1.1 DMEM 12 3.1.2 RPMI 1640 12 3.2磷酸鹽緩衝生理食鹽水配置 12 3.3細胞培養 12 3.3.1人類胚胎腎臟細胞(HEK293T) 13 3.3.2人類肺癌細胞(CL1-0、CL1-5、H1299) 13 3.3.3人類食道癌細胞(KYSE70、KYSE410) 14 3.3.4人類食道癌細胞(CE81T、CE81T 1-4) 14 3.4目標質體製備 15 3.5慢病毒製備 15 3.6慢病毒感染 15 3.7小分子核醣核酸轉染 16 3.8核醣核酸萃取 16 3.9反轉錄聚合酶連鎖反應 17 3.9.1基因 17 3.9.2小分子核醣核酸 17 3.10即時定量聚合酶連鎖反應 17 3.10.1基因 18 3.10.2小分子核醣核酸 18 3.11蛋白質萃取 18 3.12西方墨點法 18 3.12.1十二烷基硫酸鈉聚丙烯醯胺凝膠電泳配置 19 3.12.2跑膠 19 3.12.3轉漬 19 3.12.4免疫染色 20 3.13細胞增生實驗 20 3.14細胞遷移實驗 20 3.15細胞凋亡實驗 21 3.16細胞群落形成實驗 21 3.17細胞葡萄糖吞噬實驗 21 3.18統計方法 21 4.結果 23 4.1偵測CD36在不同肺癌細胞之表現量 23 4.2在CL1-0以及CL1-5改變CD36核醣核酸以及蛋白質表現量 23 4.3探討在不同肺癌細胞中CD36對細胞增生能力以及死亡速率的影響 24 4.4探討在不同肺癌細胞中CD36對細胞遷移能力的影響 25 4.5探討CD36對CL1-0葡萄糖吞噬以及醣解作用活性的影響 25 4.6偵測miR-548ba在不同食道癌細胞之表現量 25 4.7在不同食道癌細胞改變miR-548ba核醣核酸表現量 26 4.8探討在不同食道癌細胞中miR-548ba對細胞增生能力的影響 26 4.9探討miR-548ba對CE81T細胞遷移能力的影響 26 4.10探討miR-548ba可能的目標基因 26 5.討論 28 5.1探討CD36基因靜默會促進CL1-0遷移能力,但CD36大量表現不會改變CL1-5遷移能力的原因 28 5.2探討CD36低表現量於肺癌扮演重要角色的原因 28 5.3探討CD36對癌症醣解作用的影響 29 5.4探討在食道癌LIFR不是miR-548ba直接目標基因的原因 29 6.結論 31 圖 32 表 44 7.參考資料 48 圖目錄 圖一、使用即時定量聚合酶連鎖反應偵測不同肺癌細胞CD36相對內生性表現量,且以CL1-0 CD36內生性表現量為基準。 32 圖二、改變CL1-0以及CL1-5 CD36表現量。 33 圖三、CD36對CL1-0、CL1-5以及H1299細胞增生能力以及死亡速率的造成不同影響。 34 圖四、CD36對CL1-0、CL1-5以及H1299細胞遷移能力造成不同影響。 35 圖五、CD36對CL1-0葡萄糖吞噬以及醣解作用活性影響。 36 圖六、使用即時定量聚合酶連鎖反應偵測不同食道癌細胞miR-548ba內生性表現量。 37 圖七、改變KYSE70、KYSE410、CE81T以及CE81T 1-4 miR-548ba核醣核酸表現量。 38 圖八、miR-548ba對KYSE70、KYSE410、CE81T以及CE81T 1-4細胞增生能力影響。 39 圖九、miR-548ba對CE81T細胞遷移能力影響。 40 圖十、使用即時定量聚合酶連鎖反應偵測miR-548ba可能的目標基因。 43 表目錄 表一、進行小分子核醣核酸反轉錄聚合酶連鎖反應所使用之相關引子。 44 表二、進行基因即時定量聚合酶連鎖反應所使用之相關引子。 45 表三、進行小分子核醣核酸即時定量聚合酶連鎖反應所使用之相關引子。 47 | |
dc.language.iso | zh-TW | |
dc.title | 研究癌細胞中細胞訊息傳遞路徑之調控:探討CD36在肺癌的機制以及miR-548ba在食道癌的機制 | zh_TW |
dc.title | To study the mechanism of cell signaling in cancer: CD36 in lung cancer and miR-548ba in esophageal cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴亮全(Liang-Chuan Lai),陳立涵(Li-Han Chen) | |
dc.subject.keyword | 肺癌,食道癌,CD36,miR-548ba,MOB1B,細胞增生,細胞遷移, | zh_TW |
dc.subject.keyword | Lung cancer,Esophageal cancer,CD36,miR-548ba,MOB1B,Cell proliferation,Cell migration, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU202203990 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-29 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-30 | - |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2509202203504900.pdf | 2.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。