Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86092
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平(Chang-Ping Yu)
dc.contributor.authorYu-Wen Linen
dc.contributor.author林鈺玟zh_TW
dc.date.accessioned2023-03-19T23:36:28Z-
dc.date.copyright2022-09-16
dc.date.issued2022
dc.date.submitted2022-09-12
dc.identifier.citationAdekunle, K. F., & Okolie, J. A. (2015). A review of biochemical process of anaerobic digestion. Advances in Bioscience and Biotechnology, 6(03), 205. Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 78(3), 409-418. Alonso, R. M., Escapa, A., Sotres, A., & Morán, A. (2020). Integrating microbial electrochemical technologies with anaerobic digestion to accelerate propionate degradation. Fuel, 267, 117158. Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes, 7(8), 504. Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781. Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., . . . Dewil, R. (2011). Anaerobic digestion in global bio-energy production: potential and research challenges. Renewable and Sustainable Energy Reviews, 15(9), 4295-4301. Arends, J. B., & Verstraete, W. (2012). 100 years of microbial electricity production: three concepts for the future. Microbial Biotechnology, 5(3), 333-346. Ariesyady, H. D., Ito, T., & Okabe, S. (2007). Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Research, 41(7), 1554-1568. Arif, M., Wang, K., Zhu, G., Li, X., Lv, Y., Piao, D.-M., . . . Ma, F. (2022). Promoting direct interspecies electron transfer for methane production in bioelectrochemical anaerobic digestion: Impact of electrode surface area and switching circuit. International Journal of Hydrogen Energy, 47(52), 21984-21996. Ateya, B., Al-Kharafi, F., Abdallah, R., & Al-Azab, A. (2005). Electrochemical removal of hydrogen sulfide from polluted brines using porous flow through electrodes. Journal of Applied Electrochemistry, 35(3), 297-303. Baek, G., Kim, J., & Lee, C. (2016). A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – Enhancement in process performance and stability. Bioresource Technology, 222, 344-354. Baek, G., Kim, K.-Y., & Logan, B. E. (2021). Impact of surface area and current generation of microbial electrolysis cell electrodes inserted into anaerobic digesters. Chemical Engineering Journal, 426, 131281. Bilal, S. In G. Kreysa, K.-i. Ota, & R. F. Savinell, (2014). Cyclic voltammetry. Encyclopedia of Applied Electrochemistry (pp. 285-289). New York, NY: Springer New York. Bo, T., Zhu, X., Zhang, L., Tao, Y., He, X., Li, D., & Yan, Z. (2014). A new upgraded biogas production process: Coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochemistry Communications, 45, 67-70. Boe, K. (2006). Online monitoring and control of the biogas process. Denmark. Borole, A. P., Reguera, G., Ringeisen, B., Wang, Z.-W., Feng, Y., & Kim, B. H. (2011). Electroactive biofilms: current status and future research needs. Energy & Environmental Science, 4(12), 4813-4834. Bryant, M. (1979). Microbial methane production—theoretical aspects. Journal of Animal Science, 48(1), 193-201. Cagnetta, C., Coma, M., Vlaeminck, S. E., & Rabaey, K. (2016). Production of carboxylates from high rate activated sludge through fermentation. Bioresource Technology, 217, 165-172. Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., & Logan, B. E. (2009). A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 43(18), 7148-7152. Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell. Bioresource Technology, 219, 348-356. Chauhan, A., & Ogram, A. (2006). Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Applied and Environmental Microbiology, 72(4), 2400-2406. Chen, S., Rotaru, A.-E., Liu, F., Philips, J., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2014). Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresource Technology, 173, 82-86. Chen, S., Rotaru, A.-E., Shrestha, P. M., Malvankar, N. S., Liu, F., Fan, W., . . . Lovley, D. R. (2014). Promoting interspecies electron transfer with biochar. Scientific reports, 4(1), 1-7. Chen, X., Jiang, S., Zheng, Z., Pan, L., & Luo, S. (2012). Effects of culture redox potential on succinic acid production by Corynebacterium crenatum under anaerobic conditions. Process Biochemistry, 47(8), 1250-1255. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044-4064. Chen, Y., Jiang, S., Yuan, H., Zhou, Q., & Gu, G. (2007). Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 41(3), 683-689. Chen, Y., Yu, B., Yin, C., Zhang, C., Dai, X., Yuan, H., & Zhu, N. (2016). Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. Rsc Advances, 6(2), 1581-1588. Cheng, S., & Logan Bruce, E. (2007). Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences, 104(47), 18871-18873. Clauwaert, P., Tolêdo, R., van der Ha, D., Crab, R., Verstraete, W., Hu, H., . . . Rabaey, K. (2008). Combining biocatalyzed electrolysis with anaerobic digestion. Water Science and Technology, 57(4), 575-579. Clauwaert, P., & Verstraete, W. (2009). Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology, 82(5), 829-836. Colleran, E., Finnegan, S., & Lens, P. (1995). Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek, 67(1), 29-46. Colleran, E., Pender, S., Philpott, U., O'flaherty, V., & Leahy, B. (1998). Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater. Biodegradation, 9(3), 233-245. Conklin, A., Stensel, H. D., & Ferguson, J. (2006). Growth kinetics and competition between methanosarcina and methanosaeta in mesophilic anaerobic Digestion. Water Environment Research, 78(5), 486-496. Dai, X., Hu, C., Zhang, D., & Chen, Y. (2017). A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge. Bioresource Technology, 243, 914-921. Dang, Y., Holmes, D. E., Zhao, Z., Woodard, T. L., Zhang, Y., Sun, D., Lovley, D. R. (2016). Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresource Technology, 220, 516-522. De Vrieze, J., Gildemyn, S., Arends, J. B., Vanwonterghem, I., Verbeken, K., Boon, N., Rabaey, K. (2014). Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Research, 54, 211-221. De Vrieze, J., Hennebel, T., Boon, N., & Verstraete, W. (2012). Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112, 1-9. Ding, A., Yang, Y., Sun, G., & Wu, D. (2016). Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chemical Engineering Journal, 283, 260-265. Ding, L., Lin, H., Zamalloa, C., & Hu, B. (2021). Simultaneous phosphorus recovery, sulfide removal, and biogas production improvement in electrochemically assisted anaerobic digestion of dairy manure. Science of The Total Environment, 777, 146226. Drake, H. L. (1994). Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives Acetogenesis (pp. 3-60): Springer. Eastman, J. A., & Ferguson, J. F. (1981). Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. Journal (Water Pollution Control Federation), 352-366. Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95(2), 197-206. Enzmann, F., Mayer, F., Rother, M., & Holtmann, D. (2018). Methanogens: biochemical background and biotechnological applications. Amb Express, 8(1), 1-22. Farno, E., Baudez, J. C., Parthasarathy, R., & Eshtiaghi, N. (2016). Impact of thermal treatment on the rheological properties and composition of waste activated sludge: COD solubilisation as a footprint of rheological changes. Chemical Engineering Journal, 295, 39-48. Feng, Y., Yang, Q., Wang, X., & Logan, B. E. (2010). Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources, 195(7), 1841-1844. Feng, Y., Zhang, Y., Chen, S., & Quan, X. (2015). Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode. Chemical Engineering Journal, 259, 787-794. Freguia, S., Teh, E. H., Boon, N., Leung, K. M., Keller, J., & Rabaey, K. (2010). Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 101(4), 1233-1238. Fricke, K., Harnisch, F., & Schröder, U. (2008). On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy & Environmental Science, 1(1), 144-147. Gujer, W., & Zehnder, A. J. (1983). Conversion processes in anaerobic digestion. Water Science and Technology, 15(8-9), 127-167. Guo, X., Sun, C., Lin, R., Xia, A., Huang, Y., Zhu, X., . . . Murphy, J. D. (2020). Effects of foam nickel supplementation on anaerobic digestion: direct interspecies electron transfer. Journal of Hazardous Materials, 399, 122830. Guo, X., Wang, C., Sun, F., Zhu, W., & Wu, W. (2014). A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresource Technology, 152, 420-428. Hansen, T. A. (1993). Carbon metabolism of sulfate-reducing bacteria The Sulfate-Reducing Bacteria: Contemporary Perspectives (pp. 21-40): Springer. Hills, D. J. (1979). Effects of carbon: Nitrogen ratio on anaerobic digestion of dairy manure. Agricultural Wastes, 1(4), 267-278. Ho, D., Jensen, P., & Batstone, D. (2014). Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. Environmental Science & Technology, 48(11), 6468-6476. Hu, J., Zhao, J., Wang, D., Li, X., Zhang, D., Xu, Q., . . . Zeng, G. (2018). Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Bioresource Technology, 254, 7-15. Isa, Z., Grusenmeyer, S., & Verstraete, W. (1986). Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Applied and Environmental Microbiology, 51(3), 580-587. Jiang, Y., Lu, L., Wang, H., Shen, R., Ge, Z., Hou, D., . . . Ren, Z. J. (2018). Electrochemical control of redox potential arrests methanogenesis and regulates products in mixed culture electro-fermentation. ACS Sustainable Chemistry & Engineering, 6(7), 8650-8658. Jimenez, J., Vedrenne, F., Denis, C., Mottet, A., Déléris, S., Steyer, J.-P., & Cacho Rivero, J. A. (2013). A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples. Water Research, 47(5), 1751-1762. Jozala, A. (2017). Fermentation processes: BoD–Books on Demand. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737-1744. Khanh Nguyen, V., Kumar Chaudhary, D., Hari Dahal, R., Hoang Trinh, N., Kim, J., Chang, S. W., . . . Nguyen, D. D. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105. Koo, T., Shin, S. G., Lee, J., Han, G., Kim, W., Cho, K., & Hwang, S. (2017). Identifying methanogen community structures and their correlations with performance parameters in four full-scale anaerobic sludge digesters. Bioresource Technology, 228, 368-373. Koster, I. W., & Koomen, E. (1988). Ammonia inhibition of the maximum growth rate (μm) of hydrogenotrophic methanogens at various pH-levels and temperatures. Applied Microbiology and Biotechnology, 28(4), 500-505. Kumar, A., Hsu, L. H.-H., Kavanagh, P., Barrière, F., Lens, P. N. L., Lapinsonnière, L., . . . Leech, D. (2017). The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, 1(3), 0024. Kumar, R., Singh, L., & Zularisam, A. W. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322-1336. Lay, J. J., Li, Y. Y., Noike, T., Endo, J., & Ishimoto, S. (1997). Analysis of environmental factors affecting methane production from high-solids organic waste. Water Science and Technology, 36(6), 493-500. Lee, J., Kim, E., Han, G., Tongco, J. V., Shin, S. G., & Hwang, S. (2018). Microbial communities underpinning mesophilic anaerobic digesters treating food wastewater or sewage sludge: A full-scale study. Bioresource Technology, 259, 388-397. Leung, C. W. (1998). Effect of ORP on anaerobic treatment of sulfate-laden wastewater. Li, Y., Chen, Y., & Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240, 120-137. Li, Y., Yang, G., Li, L., & Sun, Y. (2018). Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment. Waste Management, 79, 744-751. Liang, Y., Xu, D., Feng, P., Hao, B., Guo, Y., & Wang, S. (2021). Municipal sewage sludge incineration and its air pollution control. Journal of Cleaner Production, 295, 126456. Lin, H., Williams, N., King, A., & Hu, B. (2016). Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion. Chemical Engineering Journal, 297, 180-192. Lin, R., Cheng, J., Zhang, J., Zhou, J., Cen, K., & Murphy, J. D. (2017). Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Bioresource Technology, 239, 345-352. Linville, J. L., Shen, Y., Schoene, R. P., Nguyen, M., Urgun-Demirtas, M., & Snyder, S. W. (2016). Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration. Process Biochemistry, 51(9), 1283-1289. Liu, C.-G., Xue, C., Lin, Y.-H., & Bai, F.-W. (2013). Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnology Advances, 31(2), 257-265. Liu, S. Y., Charles, W., Ho, G., Cord-Ruwisch, R., & Cheng, K. Y. (2017). Bioelectrochemical enhancement of anaerobic digestion: Comparing single- and two-chamber reactor configurations at thermophilic conditions. Bioresource Technology, 245, 1168-1175. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., . . . Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181-5192. Lu, L., & Ren, Z. J. (2016). Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresource Technology, 215, 254-264. Lu, L., Xing, D., Liu, B., & Ren, N. (2012). Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells. Water Research, 46(4), 1015-1026. Malina, J., Joseph, F., & Pohland, F. G. (2017). Design of anaerobic processes for the treatment of industrial and municipal wastes: Routledge. Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540-555. Mao, C., Wang, X., Xi, J., Feng, Y., & Ren, G. (2017). Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion. Energy, 135, 352-360. Martins, G., Salvador, A. F., Pereira, L., & Alves, M. M. (2018). Methane production and conductive materials: a critical review. Environmental Science & Technology, 52(18), 10241-10253. McInerney, M. J., Sieber, J. R., & Gunsalus, R. P. (2009). Syntrophy in anaerobic global carbon cycles. Current Opinion in Biotechnology, 20(6), 623-632. Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A Review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10). Menzel, T., Neubauer, P., & Junne, S. (2020). Role of microbial hydrolysis in anaerobic digestion. Energies, 13(21). Mevers, E., Su, L., Pishchany, G., Baruch, M., Cornejo, J., Hobert, E., . . . Clardy, J. (2019). An elusive electron shuttle from a facultative anaerobe. eLife, 8, e48054. Montero, B., Garcia-Morales, J., Sales, D., & Solera, R. (2008). Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresource Technology, 99(8), 3233-3243. Montiel Corona, V., & Razo-Flores, E. (2018). Continuous hydrogen and methane production from Agave tequilana bagasse hydrolysate by sequential process to maximize energy recovery efficiency. Bioresource Technology, 249, 334-341. Moscoviz, R., Toledo-Alarcón, J., Trably, E., & Bernet, N. (2016). Electro-fermentation: how to drive fermentation using electrochemical systems. Trends in Biotechnology, 34(11), 856-865. Munoz, B. S. R. (2014). 29 The Family Syntrophomonadaceae. Naradasu, D., Long, X., Okamoto, A., & Miran, W. (2020). Bioelectrochemical systems: principles and applications. In P. Kumar & C. Kuppam (Eds.), Bioelectrochemical Systems: Vol.1 Principles and Processes (pp. 1-33). Singapore: Springer Singapore. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1(2), e00103-00110. Newman, D. K., & Kolter, R. (2000). A role for excreted quinones in extracellular electron transfer. Nature, 405(6782), 94-97. Nges, I. A., & Liu, J. (2010). Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renewable Energy, 35(10), 2200-2206. Pant, D., Singh, A., Van Bogaert, G., Olsen, S. I., Nigam, P. S., Diels, L., & Vanbroekhoven, K. (2012). Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. Rsc Advances, 2(4), 1248-1263. Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2004). Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy, 29(11), 1811-1823. Park, C., Lee, C., Kim, S., Chen, Y., & Chase, H. A. (2005). Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. Journal of Bioscience and Bioengineering, 100(2), 164-167. Park, J., Lee, B., Shin, W., Jo, S., & Jun, H. (2018). Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste. Bioresource Technology, 259, 423-432. Park, J., Lee, B., Tian, D., & Jun, H. (2018). Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Bioresource Technology, 247, 226-233. Patil, S. A., Hägerhäll, C., & Gorton, L. (2012). Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews, 4(2), 159-192. Puig-Castellví, F., Cardona, L., Jouan-Rimbaud Bouveresse, D., Cordella, C. B. Y., Mazéas, L., Rutledge, D. N., & Chapleur, O. (2020). Assessment of the microbial interplay during anaerobic co-digestion of wastewater sludge using common components analysis. PLOS ONE, 15(5), e0232324. Rabaey, K., & Rozendal, R. A. (2010). Microbial electrosynthesis—revisiting the electrical route for microbial production. Nature Reviews Microbiology, 8(10), 706-716. Ren, N., Wang, B., & Huang, J. C. (1997). Ethanol‐type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology And Bioengineering, 54(5), 428-433. Rotaru, A.-E., Calabrese, F., Stryhanyuk, H., Musat, F., Shrestha, P. M., Weber, H. S., . . . Musat, N. (2018). Conductive particles enable syntrophic acetate oxidation between geobacter and methanosarcina from coastal sediments. mBio, 9(3), e00226-00218. Rotaru, A.-E., Shrestha, P. M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., . . . Lovley, D. R. (2014). A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 7(1), 408-415. Rulkens, W. (2008). Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy & Fuels, 22(1), 9-15. Sangeetha, T., Guo, Z., Liu, W., Cui, M., Yang, C., Wang, L., & Wang, A. (2016). Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC). International Journal of Hydrogen Energy, 41(4), 2189-2196. Sasaki, K., Sasaki, D., Morita, M., Hirano, S.-i., Matsumoto, N., Ohmura, N., & Igarashi, Y. (2010). Bioelectrochemical system stabilizes methane fermentation from garbage slurry. Bioresource Technology, 101(10), 3415-3422. Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., . . . Adani, F. (2012). Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environmental Science & Technology, 46(15), 8502-8510. Schink, B., Montag, D., Keller, A., & Müller, N. (2017). Hydrogen or formate: Alternative key players in methanogenic degradation. Environmental Microbiology Reports, 9(3), 189-202. Shen, N., Liang, Z., Chen, Y., Song, H., & Wan, J. (2020). Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition. Bioresource Technology, 306, 123182. Siddiquee, M. N., & Rohani, S. (2011). Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renewable and Sustainable Energy Reviews, 15(2), 1067-1072. Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418. Smith, M. R., & Mah, R. A. (1978). Growth and methanogenesis by methanosarcina strain 227 on acetate and methanol. Applied and Environmental Microbiology, 36(6), 870-879. Stams, A. J. M., De Bok, F. A. M., Plugge, C. M., Van Eekert, M. H. A., Dolfing, J., & Schraa, G. (2006). Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology, 8(3), 371-382. Sturm-Richter, K., Golitsch, F., Sturm, G., Kipf, E., Dittrich, A., Beblawy, S., . . . Gescher, J. (2015). Unbalanced fermentation of glycerol in escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresource Technology, 186, 89-96. Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., & Lovley, D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330(6009), 1413-1415. Tang, T., Liu, M., Du, Y., & Chen, Y. (2022). Deciphering the internal mechanisms of ciprofloxacin affected anaerobic digestion, its degradation and detoxification mechanism. Science of The Total Environment, 842, 156718. Tartakovsky, B., Mehta, P., Bourque, J. S., & Guiot, S. R. (2011). Electrolysis-enhanced anaerobic digestion of wastewater. Bioresource Technology, 102(10), 5685-5691. Torres, C. I., Marcus, A. K., Lee, H.-S., Parameswaran, P., Krajmalnik-Brown, R., & Rittmann, B. E. (2010). A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 34(1), 3-17. Ucisik, A. S., & Henze, M. (2008). Biological hydrolysis and acidification of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of volatile fatty acids. Water Research, 42(14), 3729-3738. Wang, A., Liu, W., Cheng, S., Xing, D., Zhou, J., & Logan, B. E. (2009). Source of methane and methods to control its formation in single chamber microbial electrolysis cells. International Journal of Hydrogen Energy, 34(9), 3653-3658. Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796-1807. Wang, N.-X., Lu, X.-Y., Tsang, Y.-F., Mao, Y., Tsang, C.-W., & Yueng, V. A. (2019). A comprehensive review of anaerobic digestion of organic solid wastes in relation to microbial community and enhancement process. Journal of the Science of Food and Agriculture, 99(2), 507-516. Wang, T., Zhu, G., Li, C., Zhou, M., Wang, R., & Li, J. (2020). Anaerobic digestion of sludge filtrate using anaerobic baffled reactor assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: Pilot-scale verification. Water Research, 170, 115329. Wang, X., Zhang, L., Peng, Y., Zhang, Q., Li, J., & Yang, S. (2019). Enhancing the digestion of waste activated sludge through nitrite addition: insight on mechanism through profiles of extracellular polymeric substances (EPS) and microbial communities. Journal of Hazardous Materials, 369, 164-170. Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335-9344. Yang, Y., Zhang, Y., Li, Z., Zhao, Z., Quan, X., & Zhao, Z. (2017). Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. Journal of Cleaner Production, 149, 1101-1108. Zakaria, B. S., Lin, L., & Dhar, B. R. (2019). Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge. Science of The Total Environment, 689, 691-699. Zhang, L., Loh, K.-C., Zhang, J., Mao, L., Tong, Y. W., Wang, C.-H., & Dai, Y. (2019). Three-stage anaerobic co-digestion of food waste and waste activated sludge: Identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters. Bioresource Technology, 285, 121333. Zhang, L., Zhu, X., Li, J., Liao, Q., & Ye, D. (2011). Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. Journal of Power Sources, 196(15), 6029-6035. Zhang, Q., Wu, L., Huang, J., Qu, Y., Pan, Y., Liu, L., & Zhu, H. (2022). Recovering short-chain fatty acids from waste sludge via biocarriers and microfiltration enhanced anaerobic fermentation. Resources, Conservation and Recycling, 182, 106342. , P., Cheng, J., Liu, G., Zhang, X., & Feng, Y. (2018). Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator. Water Research, 136, 54-63. Zhao, Z., Li, Y., Zhang, Y., & Lovley, D. R. (2020). Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. iScience, 23(12), 101794. Zhao, Z., Zhang, Y., Wang, L., & Quan, X. (2015). Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Scientific Reports, 5(1), 1-12. Zhen, G., Lu, X., Kato, H., Zhao, Y., & Li, Y.-Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renewable and Sustainable Energy Reviews, 69, 559-577. Zheng, J., Li, J., Xu, K., Long, X., Sun, H., & Yang, S. (2020). Effects of different substrates on MEC anode film formation and extracellular polymer. Paper presented at the IOP Conference Series: Earth and Environmental Science. Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427-4435. Zhu, X., Yates, M. D., & Logan, B. E. (2012). Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms. Electrochemistry Communications, 22, 116-119.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86092-
dc.description.abstract厭氧消化在執行污泥減量的處理時,能同時以甲烷的形式回收污泥的能量,但礙於反應熱力學與動力學的限制,處理效率還有待進一步提升。而生物電化學系統則是利用生物電極處理生物廢物及產能。本研究主旨在於利用輔助生物電化學系統結合厭氧消化,藉由施加恆定工作電位(-0.7 V、-0.3 V、0.1 V vs. SHE和開路控制),以期望增進厭氧工藝減廢及能量回收的效率。 本實驗採集八里污水廠之污泥,在設置含有三電極體系的無膜消化槽執行30天的產氣潛能試驗,運行過程持續監測電化學活性及有機物變化。其結果顯示,施加電位0.1 V組回饋了極高的正電流,與之同時引起電極表面之生物聚積,而由循環伏安法也測得最高電流密度之氧化峰。污泥減量上,VS去除率以0.1 V最高,並相較於其他條件,0.1 V組的反應遲滯期最為短暫,13天內即可達50%的TCOD去除率,最大日產甲烷速率比控制組增加了9.1%,並且是唯一產氫的可行條件,與之同時,0.1 V也成功抑制了硫化氫的生產。相對下,-0.7 V組則產生負電流,同時會增加酸化作用,提升揮發性脂肪酸的總體水平。最後-0.3 V組在系統表現上,顯示與控制組相同的反應特徵及趨勢。 四種電位條件的菌群結構,以相對豐度約5%以上之水解菌和60%以上之產酸菌/產乙酸菌所組成。在古菌方面,0.1 V組以氫營養型產甲烷菌Methanobacterium為優勢屬,-0.7 V、-0.3 V和控制組則以乙酸營養型產甲烷菌Methanosaeta為優勢,並且隨著系統產生的電流增加,氫營養型產甲烷菌於系統的相對豐度也隨之增加。而在電極的菌群上,Geobacter之相對豐度也隨著電位提升至陽極電位而增加。 而不同有機負荷下,生物電化學系統運用於單室消化槽的影響成效會因污泥有機固體濃度增加而降低,但仍然會影響沼氣產物的組成。zh_TW
dc.description.abstractAnaerobic digestion can reduce sludge. At the same time, the energy of the sludge is recovered in the form of methane. However, the processing efficiency needs to be improved due to reaction thermodynamics and kinetics limitations. Bioelectrochemical systems are technologies that use electrodes to treat biological waste and generate energy. This study aims to couple anaerobic digestion with a bioelectrochemical system, hoping to increase the waste reduction and energy recovery of the anaerobic process by applying constant working potentials (-0.7 V, -0.3 V, 0.1 V vs. SHE and open-circuit control). In this experiment, the sludge from Bali Sewage Treatment Plant was collected. Biochemical methane potential test ran for 30 days in a membraneless reactor with a three-electrode system. The electrochemical activity and changes in the organic matter were continuously monitored during the operation. The results showed that the applied potential of 0.1 V gave back a very high positive current. At the same time, organisms accumulated on the electrode surface. The oxidation peak with the highest current density was also measured at 0.1 V by cyclic voltammetry. In terms of sludge reduction, the 0.1 V has the highest VS removal rate. Compared with other conditions, the 0.1 V has the shortest lag period and can reach 50% TCOD removal rate within 13 days. The maximum methane production rate per day increased by 9.1% over the control and was the only feasible condition for hydrogen production. The inhibition of hydrogen sulfide generation was also successfully achieved at 0.1 V potential. In contrast, the -0.7 V produced a negative current, and the overall level of volatile fatty acids also increased. Finally, the -0.3 V showed the same reaction characteristics and trend as the control in terms of system performance. The microbial community of the four potential conditions is composed of hydrolytic bacteria with a relative abundance of more than 5% and acidogenic bacteria /acetogenic bacteria with a relative abundance of more than 60%. Among the archaea, 0.1 V was dominated by the hydrogenotrophic methanogens Methanobacterium, and -0.7 V, -0.3 V, and control were dominated by the acetoclastic methanogens Methanosaeta. As the current generated by the system increased, the relative abundance of hydrogenotrophic methanogens in the system also increased. As for the microbial structure of the working electrode, the relative abundance of Geobacter also increased with increasing potential. In terms of different organic loads, the effect of bioelectrochemical systems used in the single-chamber digester was reduced due to the increase in the concentration of organic solids in the sludge. However, it still affects the composition of biogas.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:36:28Z (GMT). No. of bitstreams: 1
U0001-0109202215263400.pdf: 6420191 bytes, checksum: c05c38edd5cae5588c34614299fa9140 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書 i 謝辭 iii 中文摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 4 1.4 研究流程 5 第二章 文獻回顧 7 2.1 厭氧消化技術沿革和機理 7 2.1.1 厭氧消化的發展 7 2.1.2 厭氧消化的機制 8 2.1.3 菌群結構表現 11 2.2 厭氧消化技術的優化及改良 12 2.2.1 參數控制 12 2.2.2 預處理技術及促進劑 14 2.3 厭氧的協同作用 17 2.3.1 種間電子傳遞 17 2.3.2 導電材對產甲烷作用的增強 19 2.3.3 硫化菌的競爭 20 2.4 生物電化學系統 21 2.4.1 生物電化學系統的定義和原理 21 2.4.2 電化學系統耦合厭氧系統 23 2.4.3 氧化還原電位的影響 24 第三章 材料與方法 27 3.1 實驗藥品與設備 27 3.1.1 實驗藥品 27 3.1.2 實驗室儀器與設備 29 3.2 電消化系統 31 3.2.1 污泥特徵 31 3.2.2 電消化槽槽體模組配製 32 3.2.3 碳氈電極前處理 33 3.2.4 Ag/AgCl參考電極製作 34 3.2.5 批次電消化產氣實驗 35 3.3 沼氣組成及含量分析 37 3.3.1 氣相層析 37 3.3.2 硫化氫分析 38 3.4 污泥性質分析 39 3.4.1 污泥總固體含量分析 39 3.4.2 化學需氧量分析 39 3.4.3 溶解性有機碳分析 40 3.4.4 多醣定量分析 41 3.4.5 蛋白質定量分析 42 3.4.6 揮發性脂肪酸分析 43 3.5 微生物組態分析實驗 44 3.5.1 去氧核醣核酸萃取 44 3.5.2 聚合酶連鎖反應 45 3.5.3 電泳膠片 46 3.5.4 16S rRNA基因定序及次世代定序 47 3.6 電化學分析 48 3.6.1 循環伏安法 48 3.6.2 掃描式電子顯微鏡 50 第四章 結果與討論 51 4.1 有機固體減量 51 4.1.1 總有機物去除 51 4.1.2 污泥固體減量 52 4.2 沼氣升級 54 4.2.1 氣體生產量 54 4.2.2 產氣比例和速率 56 4.2.3 硫化氫的抑制 59 4.3 液相變化 60 4.3.1 電消化污泥特徵 60 4.3.2 溶解性有機物 61 4.3.3 揮發性脂肪酸 64 4.3.4 溶解性多醣及蛋白 68 4.3.5 溶解性有機碳之平衡 70 4.4 BES-AD電化學性能 74 4.4.1 電流回饋 74 4.4.2 循環伏安法 76 4.4.3 電極表面生物膜 78 4.5 菌群表現 80 4.6 有機負荷的效應 86 4.6.1 固、液相變化 86 4.6.2 氣相變化 90 4.6.3 工作電極之生物膜菌群結構 91 第五章 結論與建議 93 5.1 結論 93 5.2 建議 94 參考文獻 95 附錄 109 圖 1-1 實驗架構 5 圖 2-1 厭氧消化過程的簡化途徑 10 圖 2-2 常見厭氧系統的ORP調控方案 14 圖 2-3 種間電子傳遞機制 18 圖 2-4 三種典型BES之基本原理 21 圖 2-5 BES中電極與微生物電子傳遞的模式與可能機制 24 圖 2-6 細胞內外化合物在標準條件下的氧化還原電位(vs. SHE) 25 圖 3-1 BES-AD的實際模組圖 32 圖 3-2 BES-AD系統之實驗配置 36 圖 3-3 BES-AD系統實際運作圖 36 圖 3-4 循環伏安法之電壓與時間關係圖 48 圖 3-5 循環伏安法之原理 49 圖 4-1 各組電位30天消化之TCOD濃度變化 52 圖 4-2 各組電位30天消化之VS去除率 53 圖 4-3 各組電位下沼氣隨時間之累積量 55 圖 4-4 各組電位下甲烷隨時間之累積量 55 圖 4-5 消化30天內CH4、CO2和H2生產速率(長條圖)及比例(折線圖)的變 58 圖 4-6 不同電位組之沼氣內H2S濃度 59 圖 4-7 各組電位下消化30天內SCOD的濃度變化 62 圖 4-8 各組電位下消化30天內DOC的濃度變化 62 圖 4-9 消化30天內SCOD與DOC比值變化 63 圖 4-10 VFA組成的濃度變化 67 圖 4-11 不同電位消化30天內溶解性多醣濃度變化 69 圖 4-12 不同電位消化30天內溶解性蛋白質濃度變化 69 圖 4-13 消化30天內溶解性有機碳組成變化 72 圖 4-14 電消化系統回饋之電流大小變化 75 圖 4-15 不同電位條件下電消化槽之循環伏安圖(掃速=1 mV/s) 77 圖 4-16 空白碳氈之SEM圖 78 圖 4-17 施加不同電位下工作電極碳氈之SEM圖 79 圖 4-18 電消化系統0天和30天之懸浮污泥微生物相對豐度(綱類) 81 圖 4-19 各組電位之懸浮污泥古菌相對豐度(界、綱及屬類) 82 圖 4-20 各組電位之懸浮污泥細菌相對豐度(屬類) 84 圖 4-21 微生物族群相關度Heatmap圖 85 圖 4-22 TCOD=30000 mg/L經28天電消化之有機物變化 88 圖 4-23 TCOD=30000 mg/L各組電位下消化28天內SCOD的濃度變化 89 圖 4-24 TCOD=30000 mg/L電消化系統回饋之電流大小變化 89 圖 4-25 TCOD=30000 mg/L消化28天內CH4、CO2和H2生產速率(長條圖)及比例(折線圖)的變化 90 圖 4-26 電消化系統中工作電極生物膜之微生物相對豐度(門類) 92 附圖1 TCOD=30000 mg/L VFA組成的濃度變化 109 附圖2 TCOD=30000 mg/L不同電位消化之溶解性多醣濃度變化 110 附圖3 TCOD=30000 mg/L不同電位消化之溶解性蛋白質濃度變化 110 表2-1 污泥預處理工藝之種類 15 表3-1 實驗用藥品清單 27 表3-2 實驗儀器與設備清單 29 表3-3 八里污泥基本特徵 31 表3-4 檢測各氣體之GC設定參數 37 表3-5 檢測VFA之HPLC設定參數 43 表4-1 反應30天前後各電位下TS和VS之濃度變化 53 表4-2 電消化30天後之污泥特徵 60 表4-3 不同施加電位於15天內之酸化產率 73 表4-4 TCOD=30000 mg/L反應28天前後各電位下TS和VS之濃度變化 87
dc.language.isozh-TW
dc.subject厭氧消化zh_TW
dc.subject生物電化學系統zh_TW
dc.subject產氣潛能試驗zh_TW
dc.subject甲烷zh_TW
dc.subject氧化還原電位zh_TW
dc.subjectbiochemical methane potentialen
dc.subjectanaerobic digestionen
dc.subjectbioelectrochemical systemen
dc.subjectredox potentialen
dc.subjectmethaneen
dc.title結合生物電化學和厭氧消化:施加定電位對系統的影響評估zh_TW
dc.titleCombining Bioelectrochemistry and Anaerobic Digestion: Evaluating the Impact of the Poised Potential on the Systemen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee童心欣(Hsin-Hsin Tung),郭獻文(Hsion-Wen Kuo)
dc.subject.keyword厭氧消化,生物電化學系統,氧化還原電位,甲烷,產氣潛能試驗,zh_TW
dc.subject.keywordanaerobic digestion,bioelectrochemical system,redox potential,methane,biochemical methane potential,en
dc.relation.page110
dc.identifier.doi10.6342/NTU202203063
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2022-09-16-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0109202215263400.pdf6.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved