請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Chia-Pei Liao | en |
| dc.contributor.author | 廖家沛 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:36:08Z | - |
| dc.date.copyright | 2022-09-27 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-13 | |
| dc.identifier.citation | [1] H. Eguchi , A. Hiura , H. Nakagawa, et al., “Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Change in Corneal Diseases,” BioMed Res. Int., 2017. [2] L. J. Müller, C. F. Marfurt, F. Kruse, et al., “Corneal nerves: structure, contents and function,” Experimental Eye Research, vol. 76, no. 5, pp. 521-542, 2003. [3] M. Markoulli, J. Flanagan, S. S. Tummanapalli, et al., “The impact of diabetes on corneal nerve morphology and ocular surface integrity,” The Ocular Surface, vol. 16, no. 1, pp. 45-57, 2018. [4] M. Ferdousi, A. Kalteniece, S. Azmi, et al., “Diagnosis of Neuropathy and Risk Factors for Corneal Nerve Loss in Type 1 and Type 2 Diabetes: A Corneal Confocal Microscopy Study,” Diabetes Care, vol. 44, no. 1, pp. 150-156, 2021. [5] O. Levy et al., “Increased corneal sub-basal nerve density in patients with Sjögren syndrome treated with topical cyclosporine A,” Clinical and Experiment Ophthalmology, vol. 45, no. 5, pp. 455–463, 2017. [6] A. Cruzat, D. Witkin, N. Baniasadi, et al., “Inflammation and the Nervous System: The Connection in the Cornea in Patients with Infectious Keratitis,” IOVS, vol. 52, no. 8, pp. 5136-5143, 2011. [7] D. V. Patel and C. N. J. McGhee, “Mapping the Corneal Sub-basal Nerve Plexus in Keratoconus by In Vivo Laser Scanning Confocal Microscopy,” IOVS, vol. 47, no. 4, pp. 1348-1351, 2006. [8] S. L. Misra, H. M. Kersten, R. H. Roxburgh, et al., “Corneal nerve microstructure in Parkinson's disease,” Journal of Clinical Neuroscience, vol. 39, pp. 53–58, 2017. [9] S. D. Cillà, S. Ranno, E. Carini, et al., “Corneal Subbasal Nerves Changes in Patients with Diabetic Retinopathy: An In Vivo Confocal Study,” IOVS, vol. 50, no.11, pp. 5155-5158, 2009. [10] N. Papanas and D. Ziegler, “Corneal Confocal Microscopy: A New Technique for Early Detection of Diabetic Neuropathy,” Current Diabetes Reports, vol. 13, pp. 488–499, 2013. [11] 游鈐, “Analysis of Image and Spectrum Properties on Skin Cells by Mirau-based Full-field Optical Coherence Tomography Combined with Near-infrared Raman Spectroscopy,” 國立臺灣大學, 2019. [12] Wolfram MathWorld, “Wiener-Khinchin Theorem.” [Online]. Available: https://mathworld.wolfram.com/Wiener-KhinchinTheorem.html. [13] J. S. Haggerty, W. P. Menashi, and J. F. Wenekkus, “Method for forming refractory fibers by laser energy,” U.S. Patent 3,944,640, 1976. [14] 王世昌,“玻璃纖衣摻鈦藍寶石晶體光纖之發展與應用,”國立臺灣大學, 2016. [15] Y. Dong, et al., “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull., vol. 41, no. 10, pp. 1959—1963, 2006. [16] 吳政育, “Full-field optical coherence tomography combined with raman spectroscopy for biological sample characterization,” 國立臺灣大學, 2017. [17] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B, vol. 3, no. 1, pp. 125-133, 1986. [18] E. Hecht, “Optics,” 5th Edition, Pearson Inc., 2016. [19] T. Dahmen, “Tomographic Reconstruction of Combined Tilt- and Focal Series in Scanning Transmission Electron Microscopy,” Universit¨at des Saarlandes, 2015. [20] 何端書, “Functional Optical Coherence Tomography Based on Broadband Crystal Fiber Light Source,” 國立臺灣大學, 2015. [21] J. Navaratnam, T. P. Utheim, V. K. Rajasekhar, et al., “Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium”, Journal of Functional Biomaterials, vol. 6, no. 3, pp. 917-945, 2015. [22] Z. Chen, J. You, X. Liu, et al. “Biomaterials for corneal bioengineering,” Biomed. Mater., vol. 13, no. 3, 2018. [23] H. Shuichiro, O. Tokuji, and T. Koujiro, “Comparative observations on corneas, with special reference to Bowman’s layer and Descemet’s membrane in mammals and amphibians.” J. Morphol., vol. 254, no. 3, pp. 247—258, 2002. [24] “準分子雷射屈光性角膜手術學.” [online]. Available: http://nobelgroup.com.tw/lasikeye/excimer/112.htm [25] “Anatomy and Physiology of cornea.” [Online]. Available: https://www.slideshare.net/Lhacha/anatomy-and-physiology-of-cornea [26] H. Sheha, S. Tighe, O. Hashem, et al. “Update On Cenegermin Eye Drops In The Treatment Of Neurotrophic Keratitis,” Clin. Ophthalmol., vol. 13, pp. 1973-1980, 2019. [27] J. Kokot, A. Wylęgała, B. Wowra, “Corneal confocal sub-basal nerve plexus evaluation: a review,” Acta Ophthalmologica, vol. 96, no. 3, pp. 232-242, 2018. [28] S. Patel, L. Tutchenko, “The refractive index of the human cornea: A review,” Contact Lens and Anterior Eye, vol. 42, no. 5, pp. 575-580, 2019. [29] E. Auksorius, D. Borycki, P. Stremplewski, et al. “In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography,” Biomedical Optics Express, vol. 11, no. 5, pp. 2849-2865, 2020. [30] C. F. Marfurt, J. Cox, S. Deek, et al. “Anatomy of the human corneal innervation,” Experimental Eye Research, vol. 90, no. 4, pp. 478-492, 2010. [31] 陳林志傑, “Quantification of Corneal Nerve's Image Using TCCMetrics and Full-field Optical Coherence Tomography,” 國立臺灣大學, 2020. [32] 陳昱彤, “全域式光學同調斷層掃描術用於動物眼睛模型之特性分析,”國立臺灣大學, 2018. [33] T. A. Harrison, Z. He, K. Boggs, et al. “Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area,” Mol. Vis., vol. 22, pp. 31–39, 2016. [34] S. Patel and L. Tutchenko, “The refractive index of the human cornea: A review,” Contact Lens Anterior Eye, vol. 42, no. 5, pp. 575–580, 2019. [35] C. F. Marfurt, J. Cox, S. Deek, et al. “Anatomy of the human corneal innervation,” Experimental Eye Research, vol. 90, no. 4, pp. 478-492, 2010. [36] M. A. Al-Aqaba, T. Alomar, A. Miri, et al. “Ex vivo confocal microscopy of human corneal nerves,” Br. J. Ophthalmology, vol. 94, pp. 1251-1257, 2010. [37] “屈光手術學:供眼視光學專業用(第2版).”[online]. Available: https://www.books.com.tw/web/sys_serialtext/?item=0010593426&page=5 [38] C. S. Medeiros and M. R. Santhiago, “Corneal nerves anatomy, function, injury and regeneration,” Experimental Eye Research, vol. 200, 2020 [39] T. Darwish, A. Brahma, C. O'Donnell, et al. “Subbasal nerve fiber regeneration after LASIK and LASEK assessed by noncontact esthesiometry and in vivo confocal microscopy: Prospective study,” J. Cataract. Refract. Surg., vol. 33, no. 9, pp. 1515-1521, 2007. [40] F. Zhang, S. Deng, N. Guo, et al. ”Confocal Comparison of Corneal Nerve Regeneration and Keratocyte Reaction between FS-LASIK, OUP-SBK, and Conventional LASIK,” Cornea, vol. 53, no. 9, pp. 5536-5544, 2012. [41] K. D. Tran, P. K. Dye, K. Odell, et al. “Evaluation and Quality Assessment of Prestripped, Preloaded Descemet Membrane Endothelial Keratoplasty Grafts,” Cornea, vol. 36, no. 4, pp. 484-490, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86085 | - |
| dc.description.abstract | 在角膜的研究與檢測中,建構高解析度的三維角膜影像有助於提供臨床醫生得到更多角膜診斷資訊,如在縱切面上得到各層厚度、在橫切面得到各層結構內部形貌以及角膜亞基底神經叢形貌變化。角膜是具有大量感覺神經的組織,目前許多文獻顯示許多的眼表面及系統性疾病皆與角膜亞基底神經叢形貌變化有關,例如:糖尿病Ⅰ、Ⅱ型與帕金森氏症。因此精確定量角膜亞基底神經形貌能為早期診斷提供幫助。 在本研究中,使用等向性之微米級空間解析度的可見光Ce3+:YAG自發輻射與近紅外光Ti:sapphire自發輻射兩套光源之全域式光學同調斷層掃描術分別對檢體與活體來展示角膜各層結構之橫平面與縱平面以及三維立體影像。 藉由健康與受傷角膜模式之檢體小鼠實驗,證實本系統具有細胞等級的成像能力,並且與自行撰寫之曲面擬合與投影程式及前人的TCCMetrics結合能夠得到更完整的角膜亞基底神經影像並做精確的定量分析,各個健康與損傷角膜神經參數的差異以及復原趨勢大致符合生理學。具體而言,健康與受傷角膜模式之檢體小鼠結果對比為:健康的主幹神經密度為136.93 ± 19.18 / 〖mm〗^2,損傷模式角膜之主幹神經密度在復原時間第52天為大約70 / 〖mm〗^2,是健康的神經的50%左右;健康的亞基底神經密度為61.46 ± 1.78 mm / 〖mm〗^2,損傷模式角膜為大約15 mm / 〖mm〗^2,是健康神經的24%左右;健康分枝神經密度為 731.00 ± 186.19 / 〖mm〗^2,損傷模式角膜為大約40 / 〖mm〗^2,不到健康神經的10%;分枝神經連接點密度為 608.01 ± 116.99 / 〖mm〗^2,損傷模式角膜為大約40 / 〖mm〗^2,不到健康神經的10%;健康平均分枝點為 4.57 ± 1.41,損傷模式角膜為大約0.5,大約為健康神經的10%;分枝主幹比為 5.53 ± 2.04,損傷模式角膜為大約0.5,大約為健康神經的10%。 | zh_TW |
| dc.description.abstract | In corneal research and examination, high-resolution three-dimensional corneal images can help clinicians to obtain more corneal diagnostic information, such as the thickness and the internal morphology of each layer and the corneal sub-basal nerve. The cornea is a densely innervated tissue with sensory nerve fibers, and many literatures have shown that both ocular surface and systemic diseases are associated with corneal nerves, such as diabetes and Parkinson's disease. Therefore, accurate quantification of corneal nerve can provide help for early disease diagnosis. Here we develop Ce3+:YAG and Ti:sapphire light source full-field optical coherence tomography (FF-OCT) systems with isotropic micron spatial resolution to get the en-face, cross sectional views and three-dimensional images from ex vivo and in vivo samples. We validated the imaging ability with healthy and injured models of ex vivo mice, and get the accurate quantitative analysis from more complete corneal sub-basal nerve images using curve plane tracing and projection code and TCCMetrics. The comparison between quantitative results of ex vivo healthy and injured models mice are as follows: NFD, healthy: 136.93 ± 19.18 / 〖'mm' 〗^'2' , injured: 70 / 〖mm〗^2; NFL, healthy: 61.46 ± 1.78 mm/〖'mm' 〗^'2' , injured: 15 mm / 〖mm〗^2; BND, healthy: 731.00 ± 186.19 / 〖'mm' 〗^'2' , injured: 40 / 〖mm〗^2; BNCD, healthy: 608.01 ± 116.99 mm/〖'mm' 〗^'2' , injured: 40 / 〖mm〗^2; BNCM, 4.57 ± 1.41, injured: 0.5; BMR, healthy: 5.53 ± 2.04, injured: 0.5; NFW, TC, K line, numbers of short nerve fiber, parallelism and standard deviation of single-image parallelism have no significant difference. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:36:08Z (GMT). No. of bitstreams: 1 U0001-1009202201071600.pdf: 15899730 bytes, checksum: 9fd50c5b8591e57a143afd369ec9dbca (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 Ⅰ 摘要 Ⅱ Abstract Ⅲ 目錄 Ⅳ 圖目錄 ⅤI 表目錄 XIV 第一章 緒論 1 第二章 Mirau-based 全域式光學同調斷層掃描術及眼睛結構 3 2.1 光學同調斷層掃描術基本原理 3 2.2 Mirau-based 全域式光學同調斷層掃描系統 11 2.2.1 系統簡介 12 2.2.2 影像處理 23 2.2.3 系統橫向與縱向解析度 27 2.2.4 干涉效率與訊雜比 31 2.2.5 Mirau裝置內填充物測試 35 2.3 眼睛結構介紹 39 第三章 角膜亞基底神經之影像處理與量化分析方法 43 3.1 神經影像之處理方法 43 3.2 神經影像之量化分析 53 第四章 FVB小鼠檢體角膜量測與分析結果 59 4.1 Ex vivo正常FVB小鼠角膜量測分析 59 4.1.1 小鼠角膜樣本之製備與量測方法 59 4.1.2 小鼠角膜量測結果與影像分析 61 4.1.3 小鼠角膜神經影像量化分析 67 4.2 Ex vivo受傷模式FVB小鼠角膜量測分析 72 4.2.1 小鼠角膜受傷模式之製備方法 72 4.2.2 小鼠角膜量測結果與影像分析 77 4.2.3 小鼠角膜神經影像量化分析 81 4.3 正常與受傷模式小鼠角膜神經影像量化分析比較 91 第五章 結論與未來展望 94 5.1 結論 94 5.2 未來展望 97 參考文獻 98 附錄 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 神經形貌量化 | zh_TW |
| dc.subject | 全域式光學同調斷層掃描 | zh_TW |
| dc.subject | 角膜 | zh_TW |
| dc.subject | 角膜亞基底神經 | zh_TW |
| dc.subject | Cornea | en |
| dc.subject | Quantitative of corneal sub-basal nerve | en |
| dc.subject | Full-field optical coherent tomography | en |
| dc.subject | Corneal sub-basal nerve | en |
| dc.title | 利用全域式光學同調斷層掃描術於角膜神經在疾病模式下的量化分析 | zh_TW |
| dc.title | Quantification of Corneal Nerve’s Disease Model Images Using Full-Field Optical Coherence Tomography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳偉勵(Wei-Li Chen) | |
| dc.contributor.oralexamcommittee | 林昭文(Chao-Wen Lin),孫逸珍(Yi-Chen Sun) | |
| dc.subject.keyword | 全域式光學同調斷層掃描,角膜,角膜亞基底神經,神經形貌量化, | zh_TW |
| dc.subject.keyword | Full-field optical coherent tomography,Cornea,Corneal sub-basal nerve,Quantitative of corneal sub-basal nerve, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU202203268 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-27 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1009202201071600.pdf | 15.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
