Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86044Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 何銘洋 | zh_TW |
| dc.contributor.advisor | Ming-Yang Ho | en |
| dc.contributor.author | 陳楷文 | zh_TW |
| dc.contributor.author | Kai-Wen Chen | en |
| dc.date.accessioned | 2023-03-19T23:34:14Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-10-05 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Chen, M., Quinnell, R. G., & Larkum, A. W. D. (2002). Chlorophyll d as the major photopigment in Acaryochloris marina. Journal of Porphyrins and Phthalocyanines, 06(12), 763-773. https://doi.org/10.1142/s1088424602000889
Donald Tyoker, K., & Maggie, C. (2020). Microalgae: The Multifaceted Biomass of the 21st Century. In B. Thalita Peixoto, B. Thiago Olitta, & B. Luiz Carlos (Eds.), Biotechnological Applications of Biomass. IntechOpen. https://doi.org/10.5772/intechopen.94090 Elhai, J., Vepritskiy, A., Muro-Pastor, A. M., Flores, E., & Wolk, C. P. (1997). Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. Journal of Bacteriology, 179(6), 1998-2005. https://doi.org/doi:10.1128/jb.179.6.1998-2005.1997 Elhai, J., & Wolk, C. P. (1988). [83] Conjugal transfer of DNA to cyanobacteria. In Methods in Enzymology (Vol. 167, pp. 747-754). Academic Press. https://doi.org/https://doi.org/10.1016/0076-6879(88)67086-8 Fukusumi, T., Matsuda, K., Mizoguchi, T., Miyatake, T., Ito, S., Ikeda, T., Tamiaki, H., & Oba, T. (2012). Non-enzymatic conversion of chlorophyll-a into chlorophyll-d in vitro: A model oxidation pathway for chlorophyll-d biosynthesis. FEBS Letters, 586(16), 2338-2341. https://doi.org/https://doi.org/10.1016/j.febslet.2012.05.036 Gan, F., & Bryant, D. A. (2015). Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol, 17(10), 3450-3465. https://doi.org/10.1111/1462-2920.12992 Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., & Bryant, D. A. (2014).Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 345(6202), 1312-1317. https://doi.org/10.1126/science.1256963 Gisriel, C., Shen, G., Kurashov, V., Ho, M.-Y., Zhang, S., Williams, D., Golbeck, J. H., Fromme, P., & Bryant, D. A. (2020). The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Science Advances, 6(6), eaay6415. https://doi.org/doi:10.1126/sciadv.aay6415 Gisriel, C., Shen, G. Z., Kurashov, V., Ho, M. Y., Zhang, S. J., Williams, D., Golbeck, J. H., Fromme, P., & Bryant, D. A. (2020). The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Science Advances, 6(6), Article eaay6415.46 https://doi.org/10.1126/sciadv.aay6415 Gisriel, C. J., Flesher, D. A., Shen, G., Wang, J., Ho, M.-Y., Brudvig, G. W., & Bryant, D. A. (2022). Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. Journal of Biological Chemistry, 298(1). https://doi.org/10.1016/j.jbc.2021.101408 Gisriel, C. J., Flesher, D. A., Shen, G., Wang, J., Ho, M. Y., Brudvig, G. W., & Bryant, D. A. (2022). Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. J Biol Chem, 298(1), 101408. https://doi.org/10.1016/j.jbc.2021.101408 Gisriel, C. J., Huang, H.-L., Reiss, K. M., Flesher, D. A., Batista, V. S., Bryant, D. A., Brudvig, G. W., & Wang, J. (2021). Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light. BBA Advances, 1, 100019. https://doi.org/https://doi.org/10.1016/j.bbadva.2021.100019 Gisriel, C. J., Shen, G., Ho, M.-Y., Kurashov, V., Flesher, D. A., Wang, J., Armstrong, W. H., Golbeck, J. H., Gunner, M. R., Vinyard, D. J., Debus, R. J., Brudvig, G. W., & Bryant, D. A. (2022). Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Journal of Biological Chemistry, 298(1), 101424. https://doi.org/https://doi.org/10.1016/j.jbc.2021.101424 Gisriel, C. J., Wang, J., Brudvig, G. W., & Bryant, D. A. (2020). Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyllcontaining proteins. Communications Biology, 3(1), 408. https://doi.org/10.1038/s42003-020-01139-1 Ho, M.-Y., & Bryant, D. A. (2021). Photosynthesis | Long Wavelength Pigments in Photosynthesis. In J. Jez (Ed.), Encyclopedia of Biological Chemistry III (Third Edition) (pp. 245-255). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819460-7.00009-8 Ho, M.-Y., Gan, F., Shen, G., Zhao, C., & Bryant, D. A. (2017). Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression. Photosynthesis Research, 131(2), 173-186. https://doi.org/10.1007/s11120-016-0309-z Ho, M.-Y., Shen, G., Canniffe, D. P., Zhao, C., & Bryant, D. A. (2016). Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353(6302), aaf9178. https://doi.org/10.1126/science.aaf9178 Jeanjean, R., Zuther, E., Yeremenko, N., Havaux, M., Matthijs, H. C. P., & Hagemann, M. (2003). A photosystem 1 psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete47 conditions [https://doi.org/10.1016/S0014-5793(03)00769-5]. FEBS Letters, 549(1-3), 52-56. https://doi.org/https://doi.org/10.1016/S0014- 5793(03)00769-5 Karapetyan, N. V., Holzwarth, A. R., & Rögner, M. (1999). The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Letters, 460(3), 395-400. https://doi.org/https://doi.org/10.1016/S0014-5793(99)01352-6 Kardinaal, W. E. A., Tonk, L., Janse, I., Hol, S., Slot, P., Huisman, J., & Visser, P. M. (2007). Competition for Light between Toxic and Nontoxic Strains of the Harmful Cyanobacterium <i>Microcystis</i>. Applied and Environmental Microbiology, 73(9), 2939-2946. https://doi.org/doi:10.1128/AEM.02892-06 Kurashov, V., Ho, M.-Y., Shen, G., Piedl, K., Laremore, T. N., Bryant, D. A., & Golbeck, J. H. (2019). Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynthesis Research, 141(2), 151-163. https://doi.org/10.1007/s11120-019-00616-x Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology, 111(1), 1-61. https://doi.org/https://doi.org/10.1099/00221287-111-1-1 Schluchter, W. M., Shen, G., Zhao, J., & Bryant, D. A. (1996). Characterization of psal and psaL Mutants of Synechococcus sp. Strain PCC 7002: A New Model for State Transitions in Cyanobacteria. Photochemistry and Photobiology, 64(1), 53-66. https://doi.org/https://doi.org/10.1111/j.1751-1097.1996.tb02421.x Shen, G., Canniffe, D. P., Ho, M. Y., Kurashov, V., van der Est, A., Golbeck, J. H., & Bryant, D. A. (2019). Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynth Res, 140(1), 77-92. https://doi.org/10.1007/s11120-018-00610-9 Whitton, B. A. (2012). Ecology of cyanobacteria II : their diversity in space and time. Wolf, B. M., & Blankenship, R. E. (2019). Far-red light acclimation in diverse oxygenic photosynthetic organisms. Photosynthesis Research, 142(3), 349-359. https://doi.org/10.1007/s11120-019-00653-6 Zhao, C., Gan, F., Shen, G., & Bryant, D. A. (2015). RfpA, RfpB, and RfpC are the Master Control Elements of Far-Red Light Photoacclimation (FaRLiP) [Original Research]. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01303 Zhao, Y., Shi, Y., Zhao, W., Huang, X., Wang, D., Brown, N., Brand, J., & Zhao, J. (2005). CcbP, a calcium-binding protein from <i>Anabaena</i> sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proceedings of48 the National Academy of Sciences, 102(16), 5744-5748. https://doi.org/doi:10.1073/pnas.0501782102 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86044 | - |
| dc.description.abstract | 大部分的光合生物可以利用波長 400-700 奈米的可見光能源。然而,有一些品種的 藍綠菌除了可以利用 400-700 nm 波長的能源外,也可以利用遠紅光 (波長 700-800 奈米)。當生活在可見光較少且遠紅光較多的環境時,它們可以行遠紅光轉換作用 來適應環境。經由遠紅光轉換,這些藍綠菌會產生葉綠素 d、f,以及表現遠紅光基 因簇中的 20 個基因來重組光系統一、二以及藻膽蛋白體。近期冷凍電子顯微鏡解 出的藍綠菌遠紅光下的光系統一結構,揭露了幾個可能的葉綠素 f 結合位點。然而, 葉綠素 f 以及葉綠素 a 結構上非常相似,因此以目前的技術要能夠直接區分出兩者 具有非常大的挑戰性,在一些解析度比較侷限的區域上更是不容易確定。並且,每 個葉綠素 f 在光系統一中所扮演的角色也不清楚。為了彌補結構研究上的不足,我 們選定了在遠紅光光系統一中坐落在可能葉綠素 f 結合位點附近的四個基因(psaF2, I2, J2, and L2)來進行基因剃除。結果顯示 psaL2-突變株不但在遠紅光下長得比較 慢,而且同時他們的葉綠素 f : a 比例也降低了。此外我們也發現缺少 PsaF2 和 PsaJ2 並不會影響到光系統一的三聚體結構,但卻會改變光譜特性。再者,結合先前的結 構研究以及以高效液相層析測量得出的結果-在遠紅光下突變株 psaJ2-光系統 I 中 的葉綠素 f 含量比率和野生株以及突變株 psaF2-的光系統 I 中的含量來的低可以推 斷出,在蛋白為單元體 PsaJ2 附近有一個葉綠素 f 的結合位。 | zh_TW |
| dc.description.abstract | Most oxygenic phototrophs use photosynthetically active radiation (PAR; wavelengths = 400-700 nm) for photosynthesis. However, some special cyanobacteria can use PAR and far-red light (FRL, wavelengths = 700-800 nm). When these cyanobacteria grow in FRLenriched environments, they perform far-red light photoacclimation (FaRLiP) to harvest FRL. While performing FaRLiP, they synthesize chlorophyll d (Chl d) and chlorophyll f (Chl f) and express 20 genes in the FaRLiP gene clusters to remodel their photosystem I (PSI), photosystem II, and also phycobilisome. Recent PSI structural cryogenic electron microscopy (cryo-EM) studies identified several possible Chl f binding sites in the FRLremodeled PSI. However, the structure of Chl f and Chl a are too similar, and in some regions with lower resolution, they are hard to differentiate under the resolution of cryoEM. In addition, the function of each Chl f molecule in PSI is still unknown. To complement the deficiency of cryo-EM, we individually used conjugation and homologous recombination to knockout the four PSI subunits (PsaF2, I2, J2, and L2) in the FaRLiP gene cluster in Synechococcus sp. PCC 7335. These four subunits are near the proposed binding sites in the cryo-EM structure. We found that the psaI2- and psaL2- mutant grows slower than the wild type under FRL and decreases the Chl f: a ratio. Also, the PSI purification result shows that the lack of PsaF2 or PsaJ2 does not affect trimerization but changes the spectral properties of the complex. Moreover, combined with previous structural studies and the HPLC analysis that the Chl f molecules ratio is decreased in the purified FRL PSI of psaJ2-, there is a Chl f binding site near PsaJ2. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:34:14Z (GMT). No. of bitstreams: 1 U0001-1309202218025500.pdf: 2814635 bytes, checksum: 020d9c92a1a3e3f7714dc337da6c5954 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii Table of contents iii A List of Figures vi A List of Tables vii 摘要 viii Abstract ix 1. Introduction 1 2. Material and methods 4 2.1 Cyanobacterial strains and growth conditions 4 2.2 Cargo plasmid building up 4 2.3 Conjugative transformation and homologous recombination in Synechococcus sp. PCC 7335 5 2.4 Absorption spectroscopy and room temperature and low-temperature (77K) fluorescence spectroscopy 6 2.5 Pigments extraction and HPLC analysis 7 2.6 Isolation of trimeric PSI complexes 8 3. Results 9 3.1 Conjugants built up 9 3.2 The comparisons of growth rates 9 3.3 Absorption spectra of Syn7335 WT, psaF2-, psaI2-, psaJ2-, psaL2- cells grown under FRL 10 3.5 Photosystem I isolation of WT and mutants (psaF2-, psaI2-, psaJ2-, psaL2-) 12iv 3.6 High-Performance Liquid Chromatography (HPLC) of the FRL Syn7335-WT and mutants'(psaF2-, psaI2-, psaJ2-, psaL2-) cells and their isolated PSI 13 3.7 Absorbance spectra and fluorescence spectra of isolated PSI complexes. 14 4. Discussion 15 4.1 The blue shift of psaF2- and psaJ2- under RT and 77K fluorescence spectrum 15 4.2 The Chl f binding site specification near PsaJ2 16 4.3 PSI structure changes in psaI2- and psaL2- and the exploration of Chl f binding abilities 17 5. Conclusion and future works 18 Figures 20 Fig. 1 Protein and pigments absorption spectra and the structure of chlorophylls 20 Fig. 2 Regulation mechanism of FaRLiP. 21 Fig. 3 Possible Chl f binding sites based on the cryogenic electron microscopy (cryo-EM) data from (C. J. Gisriel et al., 2022; C. J. Gisriel et al., 2020) 22 Fig. 4 Cargo plasmids are designed for conjugal transformation, and the colony PCR results of conjugation 23 Fig. 5 Growth curve of Syn7335 WT and mutants under WL and FRL. 24 Fig. 6 The doubling time of the FRL Syn7335-WT and the four mutants (psaF2-, psaI2-, psaJ2-, and psaL2-) cells. 25 Fig. 7 Syn7335 WT and mutants' (psaF2-, psaI2-, psaJ2-, and psaL2-) absorption spectra 26 Fig. 8 The RT fluorescence spectrum of the FRL Syn7335-WT and the four mutants (psaF2-, psaI2-, psaJ2-, psaL2-) cells 27v Fig. 9 Isolation of PSI complexes from Syn7335-WT and psaF2-, psaI2-, psaJ2-, psaL2- cells 28 Fig. 10 The chlorophyll ratio of Chl a: Chl d: Chl f in the 100 % stacked bar chart of FRL Syn7335-WT, psaF2-, psaJ2- cells 29 Fig. 11 The chlorophyll ratio of Chl a: Chl d: Chl f in the 100 % stacked bar chart of the trimeric PSI purified from FRL Syn7335-WT, psaF2-, psaJ2- 30 Fig. 13 RT fluorescence spectra of Syn7335 WT, psaF2-, psaJ2- PSI trimer. 32 Fig. 14 77K fluorescence spectrum of Syn7335 WT, psaF2-, psaJ2- PSI trimer. 33 Tables 34 Table 1 Medium solution of ASN-III liquid and plate 34 Table 2 Primers used in this study 36 References 45 Appendix 49 Appendix 1 Absorbance spectra of the mutants and WT cells grown under FRL 49 Appendix 2 The chlorophyll ratio of Chl a: Chl d: Chl f in the 100 % stacked bar chart of FRL Syn7335-WT, psaF2-, psaI2-, psaJ2-, and psaL2- cells 50 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 基因剔除 | zh_TW |
| dc.subject | 遠紅光轉換 | zh_TW |
| dc.subject | 螢光光譜學 | zh_TW |
| dc.subject | 吸收光譜學 | zh_TW |
| dc.subject | 遠紅光轉換 | zh_TW |
| dc.subject | 基因剔除 | zh_TW |
| dc.subject | 螢光光譜學 | zh_TW |
| dc.subject | 吸收光譜學 | zh_TW |
| dc.subject | gene knockout | en |
| dc.subject | far-red light photoacclimation (FaRLiP) | en |
| dc.subject | absorption spectroscopy | en |
| dc.subject | fluorescence spectroscopy | en |
| dc.subject | gene knockout | en |
| dc.subject | far-red light photoacclimation (FaRLiP) | en |
| dc.subject | absorption spectroscopy | en |
| dc.subject | fluorescence spectroscopy | en |
| dc.title | 利用基因剃除技術研究藍綠菌Synechococcus sp. PCC 7335中可吸收 遠紅光的光系統一 | zh_TW |
| dc.title | Mutagenesis study of the Photosystem I that absorbs far-red light in a cyanobacterium Synechococcus sp. PCC 7335 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱修安;謝旭亮;傅瀚儀 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiu-An Chu;Hsu-Liang Hsieh;Han-Yi Fu | en |
| dc.subject.keyword | 遠紅光轉換,基因剔除,螢光光譜學,吸收光譜學, | zh_TW |
| dc.subject.keyword | far-red light photoacclimation (FaRLiP),gene knockout,fluorescence spectroscopy,absorption spectroscopy, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202203363 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-19 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2025-09-04 | - |
| Appears in Collections: | 生命科學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-110-2.pdf | 2.75 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
