Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭舒婷(Su-Ting Cheng)
dc.contributor.authorWei-Chung Panen
dc.contributor.author潘巍中zh_TW
dc.date.accessioned2023-03-19T23:33:05Z-
dc.date.copyright2022-09-19
dc.date.issued2022
dc.date.submitted2022-09-19
dc.identifier.citation1. 臺北市政府工務局公園路燈管理處。行道樹、公園樹木預定修剪及澆灌行程。公園處預定澆灌一覽表。資料網址:(https://pkl.gov.taipei/News_Content.aspx?n=EBBD7C86561BDECF&s=881C4ED1C5E8D18F)。 2. 臺灣維管束植物調查及物候觀察網站:(https://plant.tbn.org.tw/) 3. 林金樹、焦國模(1997)。遙測資訊在生態環境變遷監測上應用之研究-以台南地區為例。航測及遙測學刊 2(3):37-76。 https://doi.org/10.6574/JPRS.1997.2(3).4 4. 邱祈榮、王亞男、黃兆吟、賴彥任(2007)。遙測技術於溪頭地區崩塌裸露地變遷分析與植生覆蓋回復監測之研究。中華林學季刊 40(3):301 – 318。https://doi.org/10.30064/QJCF.200709.0002 5. 邱祈榮、楊鄢如、潘孝隆、蔡維倫、葉媚媚、賴彥任(2010)。金門行道樹景觀效益之評估。中華林學季刊 43(1):107 – 130。https://doi.org/10.30064/QJCF.201003.0008 6. 張仲德、黃倬英(2016)。以 MODIS 時序資料分析台灣植被物候空間分布。航測及遙測學刊 20(1):1-14。 https://doi.org/10.6574/JPRS.2016.20(1).1 7. 張效通、陳志豪(2009)。應用遙測與GIS評估都市地區綠覆程度之研究-以台北市爲例。社會與區域發展學報2(1)23 – 45。https://doi.org/10.29868/JSRD.200912.0002 8. 陳信宏(2011)。遙測技術於台北市都市綠地之碳吸存監測研究。文化大學景觀學系碩士學位論文。 9. 陳建璋、魏浚紘、謝依達、陳朝圳(2017)。行道樹、受保護樹木之調查及資訊系統建立與應用。中華林學季刊50(1):33 – 56。https://doi.org/10.6628/GIS.2008.2(1).4 10. 應紹舜(1991)。台灣高等植物彩色圖誌。第一卷,4.樟樹,p. 291。 11. 應紹舜(1998)。台灣高等植物彩色圖誌。第六卷,1.台灣欒樹,p. 193。 12. A. Bannari, D. Morin , F. Bonn & A. R. Huete (1995) A review of vegetation indices. Remote Sensing Reviews 13(1-2):1-2, 95-120. https://doi.org/10.1080/02757259509532298 13. Adrian V. Rocha, Gaius R. Shaver (2009) Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology 149(9):1560 - 1563. https://doi.org/10.1016/j.agrformet.2009.03.016 14. Amanda Veloso, Stéphane Mermoz, Alexandre Bouvet, Thuy Le Toan, Milena Planells, Jean-François Dejoux, Eric Ceschia (2017) Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment 199:415 - 426. https://doi.org/10.1016/j.rse.2017.07.015 15. A. R. Huete (1988) A soil-adjusted vegetation index (SAVI). Remote sensing of environment 25(3):295-309. https://doi.org/10.1016/0034-4257(88)90106-X 16. A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao, L. G. Ferreira (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1-2):195-213. https://doi.org/10.1016/S0034-4257(02)00096-2 17. A. R. Huete, HuiQing Liu and W. J. D. van Leeuwen (1997) The use of vegetation indices in forested regions: issues of linearity and saturation. IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development 4:1966-1968. https://doi.org/10.1109/IGARSS.1997.609169 18. Benjamin Burkhard, Franziska Kroll, Stoyan Nedkov, Felix Müller (2012) Mapping ecosystem service supply, demand and budgets. Ecological Indicators 21:17–29. https://doi.org/10.1016/j.ecolind.2011.06.019 19. C. Yonezawa (2007) Maximum likelihood classification combined with spectral angle mapper algorithm for high resolution satellite imagery. International Journal of Remote Sensing 28(16):3729-3737. https://doi.org/10.1080/01431160701373713 20. Carlos Granero-Belinchon, Karine Adeline, Aude Lemonsu, Xavier Briottet (2020) Phenological Dynamics Characterization of Alignment Trees with Sentinel-2 Imagery: A Vegetation Indices Time Series Reconstruction Methodology Adapted to Urban Areas. Remote Sensing 12(4):639. https://doi.org/10.3390/rs12040639 21. Cynnamon Dobbs, Francisco J. Escobedo, Wayne C. Zipperer (2011) A framework for developing urban forest ecosystem services and goods indicators. Landscape and Urban Planning 99(3-4):196-206. https://doi.org/10.1016/j.landurbplan.2010.11.004 22. D. J. Nowak, David J.; Maco, Scott; Binkley, Mike (2018) i-Tree: Global tools to assess tree benefits and risks to improve forest management. Arboricultural Consultant 51(4):10-13. https://doi.org/10.1016/j.foreco.2015.01.024 23. Enping Yan, Guangxing Wang, Hui Lin, Chaozong Xia & Hua Sun (2015) Phenology-based classification of vegetation cover types in Northeast China using MODIS NDVI and EVI time series. International Journal of Remote Sensing. 36(2):489–512. https://doi.org/10.1080/01431161.2014.999167 24. E. Banzhaf, H. Kollai (2015) Monitoring the urban tree cover for urban ecosystem services – the case of leipzig, Germany. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3: 301 – 305. https://doi.org/10.5194/isprsarchives-XL-7-W3-301-2015 25. European space agency (2015) Sentinel-2 User Handbook P51-54. 26. European space agency (2016) Sen2Cor Configuration and User Manual. P16-18. 27. Fabian Ewald Fassnacht, Hooman Latifi, Krzysztof Stereńczak, Aneta Modzelewska, Michael Lefsky, Lars T. Waser, Christoph Straub, Aniruddha Ghosh (2016) Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment. 186:64-87. https://doi.org/10.1016/j.rse.2016.08.013 28. Francisco J. Escobedo, Timm Kroeger, John E. Wagner (2011) Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution 159(8-9):2078─2087. https://doi.org/10.1016/j.envpol.2011.01.010 29. Gourav Misra, Fiona Cawkwell, Astrid Wingler (2020) Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sensing 12(17):2760. https://doi.org/10.3390/rs12172760 30. G. H. Moeller (1977) The Pinchot Institute: toward managing our urban forest resources. Journal of Arboriculture. 3:181-186. 31. Heng Wan, Daniel McLaughlin, Yang Shao, Brian van Eerden, Shyam Ranganthan, Xinwei Deng (2021) Remotely-sensed evapotranspiration for informed urban forest management. Landscape and Urban Planning. 210:104069. https://doi.org/10.1016/j.landurbplan.2021.104069 32. I. Chuine, P. Cour, D. D. Rousseau (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant, Cell & Environment. 22(1):1-13. https://doi.org/10.1046/j.1365-3040.1999.00395.x 33. J. Livesley, E. G. McPherson, C. Calfapietra (2016) The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. Journal of Environmental Quality 45(1):119-124. https://doi.org/10.2134/jeq2015.11.0567 34. Jeevalakshmi. D, S. Narayana Reddy, B. Manikiam (2017) Land Surface Temperature Retrieval from LANDSAT data using Emissivity Estimation. International Journal of Applied Engineering Research 12:9679-9687. 35. Jian Lin, Charles N. Kroll, David J. Nowak, Eric J. Greenfield (2019) A review of urban forest modeling: Implications for management and future research. Urban Forestry & Urban Greening. 43:126366. https://doi.org/10.1016/j.ufug.2019.126366 36. Leslie Mabon, Wan-Yu Shih (2018) What might ‘just green enough’ urban development mean in the context of climate change adaptation? The case of urban greenspace planning in Taipei Metropolis, Taiwan. World Development. 107:224-238. https://doi.org/10.1016/j.worlddev.2018.02.035 37. Leslie Mabon, Kayoko Kondo, Hiroyuki Kanekiyo, Yuriko Hayabuchi, Asako (2019) Yamaguchi. Fukuoka: Adapting to climate change through urban green space and the built environment? Cities. 93:273-285. https://doi.org/10.1016/j.cities.2019.05.007 38. M. Main-Knorn, B. Pflug, V. Debaecker, J. Louis (2015) Calibration and Validation Plan For The L2a Processor And Products Of The Sentinel-2 Mission. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3:1249 – 1255. https://doi.org/10.5194/isprsarchives-XL-7-W3-1249-2015 39. M. Millán (1980) Remote Sensing of Air Pollutants: A Study of Some Atmospheric Scattering Effects. Atmospheric Environment, 14(11):1241 - 1253. https://doi.org/ 10.1016/0004-6981(80)90226-7 40. Mary L. McHugh (2012) Interrater reliability: the kappa statistic. Biochemia Medica 22(3): 276–282. https://doi.org/10.11613/BM.2012.031 41. N. Karasiak, D. Sheeren, M. Fauvel, J. Willm, J.-F. Dejoux, C. Monteil (2017) Mapping Tree Species of Forests in Southwest France using Sentinel-2 Image Time Series. 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp) P1 - 4. https://doi.org/10.1109/Multi-Temp.2017.8035215 42. P Pérez Chaves, K Ruokolainen, H Tuomisto (2018) Using remote sensing to model tree species distribution in Peruvian lowland Amazonia. Biotropica. 50 (5) :758-767. https://doi.org/10.1111/btp.12597 43. P. S. Chavez Jr. (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24(3):459-479. https://doi.org/10.1016/0034-4257(88)90019-3 44. Per Bolund, Sven Hunhammar (1999) Ecosystem services in urban areas. Ecological Economics. 29(2):293-301. https://doi.org/10.1016/S0921-8009(99)00013-0 45. Qianwen Duan, Minghong Tan, Yuxuan Guo, Xue Wang, Liangjie Xin (2019) Understanding the Spatial Distribution of Urban Forests in China Using Sentinel-2 Images with Google Earth Engine. Forests. 10(9):729. https://doi.org/10.3390/f10090729 46. Qingyu Li, Chunping Qiu, Lei Ma, Michael Schmitt, Xiao Xiang Zhu (2020) Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine. Remote Sensing. 12(4):602. https://doi.org/10.3390/rs12040602 47. Oliver Baines, Phil Wilkes, Mathias Disney (2020) Quantifying urban forest structure with open-access remote sensing data sets. Urban Forestry & Urban Greening 50:126653. https://doi.org/10.1016/j.ufug.2020.126653 48. Rajesh Bahadur Thapa, Yuji Murayama (2009) Urban mapping, accuracy, & image classification: A comparison of multiple approaches in Tsukuba City, Japan. Applied Geography. 29(1):135–144. https://doi.org/10.1016/j.apgeog.2008.08.001 49. Ram C. Sharma, Keitarou Hara, Ryutaro Tateishi (2017) High-Resolution Vegetation Mapping in Japan by Combining Sentinel-2 and Landsat 8 Based Multi-Temporal Datasets through Machine Learning and Cross-Validation Approach. Land. 6(3):50. https://doi.org/10.3390/land6030050 50. R. H. Waring, N. C. Coops, W. Fan, J. M. Nightingale (2006) MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous U.S.A. Remote Sensing of Environment 103(2):218-226. https://doi.org/10.1016/j.rse.2006.05.007 51. R. Shojanoori, HZM Shafri (2016) Review on the use of remote sensing for urban forest monitoring. Arboriculture & Urban Forestry. 42(6): 400–417. https://doi.org/10.48044/jauf.2016.034 52. Ruyin Cao, Jin Chenb, Miaogen Shen, Yanhong Tang (2015) An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data. Agricultural and Forest Meteorology 200:9–20. https://doi.org/10.1016/j.agrformet.2014.09.009 53. Ruiliang Pu, Shawn Landry (2012) A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment 124:516-533. https://doi.org/10.1016/j.rse.2012.06.011 54. Sha Huang, Lina Tang, Joseph P. Hupy, Yang Wang, Guofan Shao (2021) A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research 32(1):1 - 6. https://doi.org/10.1007/s11676-020-01155-1 55. Shuang Li, Liang Xu, Yinghong Jing, Hang Yin, Xinghua Li, Xiaobin Guan (2021) High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. International Journal of Applied Earth Observations and Geoinformation. 105:102640. https://doi.org/10.1016/j.jag.2021.102640 56. Simon Rougier, Anne Puissant (2014) Improvements of Urban vegetation segmentation and classification using multi‐temporal Pleiades images. South‐Eastern European Journal of Earth Observation and Geomatics 3(2S):409-414. 57. Stephen J. Livesley, Francisco J. Escobedo, Justin Morgenroth (2016) The Biodiversity of Urban and Peri-Urban Forests and the Diverse Ecosystem Services They Provide as Socio-Ecological Systems. Forests 7(12):291. https://doi.org/10.3390/f7120291 58. Ugur Avdan, Gordana Jovanovska (2016) Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors 2016: 1 – 8. https://doi.org/10.1155/2016/1480307 59. Xun Li, Wendy Y. Chen, Giovanni Sanesi, Raaele Lafortezza (2019) Remote Sensing in Urban Forestry: Recent Applications and Future Directions. Remote Sensing 11(10):1144. https://doi.org/10.3390/rs11101144 60. Y. J. Kaufman, D. Tanre (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing 30(2)261-270. https://doi.org/10.1109/36.134076 61. Y. T. Mustafa, H. N. Habeeb, A. Stein, F. Y. Sulaiman (2015) Identification And Mapping Of Tree Species In Urban Areas Using Worldview-2 Imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-2/W2:28–30. https://doi.org/10.5194/isprsannals-II-2-W2-175-2015 62. Yingpin Yang, Jiancheng Luo, Qiting Huang, Wei Wu, Yingwei Sun (2019) Weighted Double-Logistic Function Fitting Method for Reconstructing the High-Quality Sentinel-2 NDVI Time Series Data Set. Remote Sensing 11(20):2342. https://doi.org/10.3390/rs11202342 63. Zhangyan Jiang, Alfredo R.Huete, Kamel Didan, Tomoaki Miura (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112(10):3833 - 3845. https://doi.org/10.1016/j.rse.2008.06.006
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86018-
dc.description.abstract都市林可提供多樣生態系服務功能,提升市民之生活品質,若能以系統性的方法監測都市林之時空變化,應能協助增進都市林經營管理。本研究運用哨兵衛星2號遙測資料結合行道樹現地測量資訊,探討行道樹樹冠活動的年間變化與衛星影像之關聯性,以協助建立系統性監測方法。我選擇台北市種植數量較多的兩種行道樹台灣欒樹(Koelreuteria henryi)和樟樹(Cinnamomum camphora)為研究對象,運用三種不同植生指數,包括:NDVI、EVI與雙波段EVI(EVI2)時間序列資料,抽取試驗區中樹木訊號,以曲線擬合演算法將試驗區位置影像依不同植生覆蓋程度進行分類,並量化不同植生區域之植生指數時序資料,最後結合衛星資料和氣象站記錄所推估而得之試驗區地表溫度資料間進行相關性分析。 研究結果顯示以NDVI植生指數進行分類的結果有較高的準確率,台灣欒樹區域與樟樹區域分別獲得66%與72%的分類準確度、Kappa指數分別為0.39和0.58。而以EVI所建構而得的時序資料雜訊較少,適合用來捕捉行道樹一年中主要的物候事件特徵;分析結果亦發現落葉樹種的氣溫變化與年間樹冠活動之相關性較常綠樹種為高。因此,利用開源衛星資料配合地面基礎調查資料,結合氣象及植生指數時間序列資料,可協助了解行道樹之年間生長狀況,並建立系統性之都市林監測方法,提供相關單位於都市林經營規劃所需之重要資訊。zh_TW
dc.description.abstractUrban forests provide multiple ecosystem services and functions to improve life qualities for city residents. Applying a systematic way to monitor the spatial and temporal changes in urban forests can help improve urban forest management. To establish a systematic monitoring method, this study uses the Sentinel-2 remote sensing data combined with in situ street tree inventory data to explore the relationship between annual tree crown dynamics and satellite imagery. I selected two of the widely-planted tree species in Taipei City, Koelreuteria elegans and Cinnamomum camphora as the research objects, and applied three different vegetation indices, including NDVI, EVI, and dual-band EVI(EVI2) time series data, to extract the tree signals from the plots. Then I classified the images with different vegetation coverages in the plots based on the curve-fitting algorithm. Following that, I quantified the vegetation index time-series data extracted from different tree-cover areas. Lastly, I explored the relationship between vegetation index and surface temperature estimated by combining satellite data and meteorological station records. Results showed that among the three vegetation indices, the classification based on NDVI had a higher accuracy, that the Koelreuteria elegans area and the Cinnamomum camphora area obtained 66% and 72% of the classification accuracy, and the kappa coefficient κ was 0.39 and 0.58, respectively. Results revealed that the vegetation index time-series data extracted by EVI had less noise, suitable for capturing the characteristics of the main phenological events in a year. The analysis results also found a higher correlation between temperature changes and the annual tree crown activities of the deciduous than those of the evergreen species. Therefore, using open-source satellite data in conjunction with the ground-based survey data, and combining with meteorological and vegetation index time-series data, can help understand the annual growth of street trees, assist in the establishment of a systematic method for urban forest monitoring, and provide critical information needed in the urban forest management and planning.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:33:05Z (GMT). No. of bitstreams: 1
U0001-1509202211292600.pdf: 3812732 bytes, checksum: 3d0baff01452dcf5e27203548e5e3901 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 謝誌 II 中文摘要 III ABSTRACT IV 目錄 VI 圖目錄 VII 表目錄 VIII 第一章 緒論 1 第二章 文獻回顧 5 第一節 前人研究 5 第二節 影像分類演算法 6 第三節 地表植生指數 7 第三章 材料與方法 9 第一節 研究地點與材料 9 第二節 研究架構概述 12 第三節 衛星影像前處理 16 第四節 地表植生指數建構 17 第五節 影像分類方法與程序 19 第六節 地表溫度分析 25 第七節 年間樹冠活動分析 29 第四章 結果 30 第一節 影像分類成果 30 第二節 植生指數分析結果 38 第三節 地表溫度分析 43 第五章 討論 50 第一節 影像分類結果檢討 50 第二節 台北行道樹年間動態分析 53 第六章 結論 57 引用文獻 58
dc.language.isozh-TW
dc.subject樟樹zh_TW
dc.subject台灣欒樹zh_TW
dc.subject都市樹木監測zh_TW
dc.subject都市林zh_TW
dc.subject影像分類zh_TW
dc.subject衛星遙測zh_TW
dc.subjectKoelreuteria henryien
dc.subjectRemote sensingen
dc.subjectUrban foresten
dc.subjectImage classificationen
dc.subjectUrban forest monitoringen
dc.subjectCinnamomum camphoraen
dc.title以衛星時序資料發展都市行道樹監測技術zh_TW
dc.titleDeveloping the Monitoring Method for Urban Street Trees by Satellite Time-series Dataen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.advisor-orcid鄭舒婷(0000-0003-1786-6049)
dc.contributor.oralexamcommittee謝漢欽(Han-Ching Hsieh), 黃倬英(Cho-ying Huang),林金樹(Chin-Su Lin),王素芬 (Su-Fen Wang)
dc.contributor.oralexamcommittee-orcid謝漢欽(0000-0002-9144-8323), 黃倬英(0000-0002-9174-7542),林金樹(0000-0002-4513-8674),王素芬 (0000-0002-0650-8556)
dc.subject.keyword衛星遙測,都市林,影像分類,都市樹木監測,樟樹,台灣欒樹,zh_TW
dc.subject.keywordRemote sensing,Urban forest,Image classification,Urban forest monitoring,Cinnamomum camphora,Koelreuteria henryi,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202203424
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
dc.date.embargo-lift2022-09-19-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-1509202211292600.pdf3.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved