請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86012完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童心欣(Hsin-hsin Tung) | |
| dc.contributor.author | Chia-Yu Hsu | en |
| dc.contributor.author | 許家瑜 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:32:49Z | - |
| dc.date.copyright | 2022-10-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-19 | |
| dc.identifier.citation | Achak, M., Bakri, S. A., Chhiti, Y., Alaoui, F. E. M., Barka, N., & Boumya, W. (2021). SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Science of the Total Environment, 761. https://doi.org/10.1016/j.scitotenv.2020.143192 Agarwal, A., Ng, W. J., & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175-1180. https://doi.org/10.1016/j.chemosphere.2011.05.054 Ahammad, Z. S., Sreekrishnan, T. R., Hands, C. L., Knapp, C. W., & Graham, D. W. (2014). Increased Waterborne bla(NDM-1) Resistance Gene Abundances Associated with Seasonal Human Pilgrimages to the Upper Ganges River. Environmental Science & Technology, 48(5), 3014-3020. https://doi.org/10.1021/es405348h Alexander, J., Hembach, N., & Schwartz, T. (2020). Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65635-4 Alexander, J., Knopp, G., Dotsch, A., Wieland, A., & Schwartz, T. (2016). Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Science of the Total Environment, 559, 103-112. https://doi.org/10.1016/j.scitotenv.2016.03.154 Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251-259. https://doi.org/10.1038/nrmicro2312 Almakki, A., Jumas-Bilak, E., Marchandin, H., & Licznar-Fajardo, P. (2019). Antibiotic resistance in urban runoff. Science of the Total Environment, 667, 64-76. https://doi.org/10.1016/j.scitotenv.2019.02.183 American Public Health, A., Baird, R., Eaton, A. D., Rice, E. W., Bridgewater, L., American Water Works, A., & Water Environment, F. (2017). Standard methods for the examination of water and wastewater (Twenty-third edition. ed.). American Public Health Association. Antunes, P., Machado, J., Sousa, J. C., & Peixe, L. (2005). Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrobial Agents and Chemotherapy, 49(2), 836-839. https://doi.org/10.1128/Aac.49.2.836-839.2005 Asghari, F. B., Dehghani, M. H., Dehghanzadeh, R., Farajzadeh, D., Shanehbandi, D., Mahvi, A. H., Yaghmaeian, K., & Rajabi, A. (2021). Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-04254-z Barraud, O., Baclet, M. C., Denis, F., & Ploy, M. C. (2010). Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. Journal of Antimicrobial Chemotherapy, 65(8), 1642-1645. https://doi.org/10.1093/jac/dkq167 Bengtsson-Palme, J., Hammarén, R., Pal, C., Östman, M., Björlenius, B., Flach, C.-F., Fick, J., Kristiansson, E., Tysklind, M., & Larsson, D. G. J. (2016). Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Science of the Total Environment, 572, 697-712. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.06.228 Bernhard, M., Muller, J., & Knepper, T. R. (2006). Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Research, 40(18), 3419-3428. https://doi.org/10.1016/j.watres.2006.07.011 Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. https://doi.org/10.1038/nrmicro3380 Chang, P. H., Juhrend, B., Olson, T. M., Marrs, C. F., & Wigginton, K. R. (2017). Degradation of Extracellular Antibiotic Resistance Genes with UV254 Treatment. Environmental Science & Technology, 51(11), 6185-6192. https://doi.org/10.1021/acs.est.7b01120 Cheng, D. L., Ngo, H. H., Guo, W. S., Liu, Y. W., Chang, S. W., Nguyen, D. D., Nghiem, L. D., Zhou, J. L., & Ni, B. J. (2018). Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues. Bioresource Technology, 267, 714-724. https://doi.org/10.1016/j.biortech.2018.07.133 Chiang, Y. P., Liang, Y. Y., Chang, C. N., & Chao, A. C. (2006). Differentiating ozone direct and indirect reactions on decomposition of humic substances. Chemosphere, 65(11), 2395-2400. https://doi.org/10.1016/j.chemosphere.2006.04.080 Choi, P. M., Tscharke, B. J., Donner, E., O'Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie, R., O'Malley, E., Crosbie, N. D., Thomas, K. V., & Mueller, J. F. (2018). Wastewater-based epidemiology biomarkers: Past, present and future. Trac-Trends in Analytical Chemistry, 105, 453-469. https://doi.org/10.1016/j.trac.2018.06.004 Czekalski, N., Diez, E. G., & Burgmann, H. (2014). Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. Isme Journal, 8(7), 1381-1390. https://doi.org/10.1038/ismej.2014.8 Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., Hammes, F., Burgmann, H., & von Gunten, U. (2016). Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Environmental Science & Technology, 50(21), 11862-11871. https://doi.org/10.1021/acs.est.6b02640 de Wilt, A., van Gijn, K., Verhoek, T., Vergnes, A., Hoek, M., Rijnaarts, H., & Langenhoff, A. (2018). Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process. Water Research, 138, 97-105. https://doi.org/10.1016/j.watres.2018.03.028 Eramo, A., Medina, W. R. M., & Fahrenfeld, N. L. (2020). Factors associated with elevated levels of antibiotic resistance genes in sewer sediments and wastewater. Environmental Science-Water Research & Technology, 6(6), 1697-1710. https://doi.org/10.1039/d0ew00230e Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., & McArdell, C. S. (2011). Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 45(1), 75-92. https://doi.org/10.1016/j.watres.2010.08.019 Fan, W., An, W. G., Huo, M. X., Yang, W., Zhu, S. Y., & Lin, S. S. (2020). Solubilization and stabilization for prolonged reactivity of ozone using micro-nano bubbles and ozone-saturated solvent: A promising enhancement for ozonation. Separation and Purification Technology, 238. https://doi.org/10.1016/j.seppur.2019.116484 Ferro, G., Guarino, F., Cicatelli, A., & Rizzo, L. (2017). beta-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/H2O2. Journal of Hazardous Materials, 323, 426-433. https://doi.org/10.1016/j.jhazmat.2016.03.014 Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: The agents of open source evolution. Nature Reviews Microbiology, 3(9), 722-732. https://doi.org/10.1038/nrmicro1235 Gardoni, D., Vailati, A., & Canziani, R. (2012). Decay of Ozone in Water: A Review. Ozone-Science & Engineering, 34(4), 233-242. https://doi.org/10.1080/01919512.2012.686354 Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y. G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. Isme Journal, 9(6), 1269-1279. https://doi.org/10.1038/ismej.2014.226 Goldenfeld, N., & Woese, C. (2007). Biology's next revolution. Nature, 445(7126), 369-369. https://doi.org/10.1038/445369a Gullberg, E., Cao, S., Berg, O. G., Ilback, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of Resistant Bacteria at Very Low Antibiotic Concentrations. Plos Pathogens, 7(7). https://doi.org/10.1371/journal.ppat.1002158 Hembach, N., Schmid, F., Alexander, J., Hiller, C., Rogall, E. T., & Schwartz, T. (2017). Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01282 Hocquet, D., Muller, A., & Bertrand, X. (2016). What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. Journal of Hospital Infection, 93(4), 395-402. https://doi.org/https://doi.org/10.1016/j.jhin.2016.01.010 Hsu, J. T., Chen, C. Y., Young, C. W., Chao, W. L., Li, M. H., Liu, Y. H., Lin, C. M., & Ying, C. W. (2014). Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Journal of Hazardous Materials, 277, 34-43. https://doi.org/10.1016/j.jhazmat.2014.02.016 Hu, L. M., & Xia, Z. R. (2018). Application of ozone micro-nano-bubbles to groundwater remediation. Journal of Hazardous Materials, 342, 446-453. https://doi.org/10.1016/j.jhazmat.2017.08.030 Hu, Y. F., Yang, X., Li, J., Lv, N., Liu, F., Wu, J., Lin, I. Y. C., Wu, N., Weimer, B. C., Gao, G. F., Liu, Y. L., & Zhu, B. L. (2016). The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes. Applied and Environmental Microbiology, 82(22), 6672-6681. https://doi.org/10.1128/Aem.01802-16 Hubner, U., Zucker, I., & Jekel, M. (2015). Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents. Journal of Water Reuse and Desalination, 5(1), 8-16. https://doi.org/10.2166/wrd.2014.036 Ji, X. L., Shen, Q. H., Liu, F., Ma, J., Xu, G., Wang, Y. L., & Wu, M. H. (2012). Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials, 235, 178-185. https://doi.org/10.1016/j.jhazmat.2012.07.040 Joss, A., Siegrist, H., & Ternes, T. A. (2008). Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Science and Technology, 57(2), 251-255. https://doi.org/10.2166/wst.2008.825 Karkman, A., Parnanen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 10. https://doi.org/10.1038/s41467-018-07992-3 Kehrenberg, C., Friederichs, S., de Jong, A., Michael, G. B., & Schwarz, S. (2006). Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. Journal of Antimicrobial Chemotherapy, 58(1), 18-22. https://doi.org/10.1093/jac/dkl213 Khan, M. T., Shah, I. A., Ihsanullah, I., Naushad, M., Ali, S., Shah, S. H. A., & Mohammad, A. W. (2021). Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes. Journal of Water Process Engineering, 41. https://doi.org/10.1016/j.jwpe.2021.101990 Kim, I., Yamashita, N., & Tanaka, H. (2009). Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. Journal of Hazardous Materials, 166(2-3), 1134-1140. https://doi.org/10.1016/j.jhazmat.2008.12.020 Kim, S., Park, H., & Chandran, K. (2010). Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: A mathematical modeling approach. Chemosphere, 78(9), 1071-1077. https://doi.org/10.1016/j.chemosphere.2009.12.068 Kobayashi, F., Ikeura, H., Ohsato, S., Goto, T., & Tamaki, M. (2011). Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp melonis and Pectobacterium carotovorum subsp carotovorum. Crop Protection, 30(11), 1514-1518. https://doi.org/10.1016/j.cropro.2011.07.018 Korzeniewska, E., Korzeniewska, A., & Harnisz, M. (2013). Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicology and Environmental Safety, 91, 96-102. https://doi.org/10.1016/j.ecoenv.2013.01.014 Kummerer, K. (2009a). Antibiotics in the aquatic environment - A review - Part I. Chemosphere, 75(4), 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086 Kummerer, K. (2009b). Antibiotics in the aquatic environment - A review - Part II. Chemosphere, 75(4), 435-441. https://doi.org/10.1016/j.chemosphere.2008.12.006 Kummerer, K., & Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical Microbiology and Infection, 9(12), 1203-1214. https://doi.org/10.1111/j.1469-0691.2003.00739.x Le, T. H., Ng, C., Chen, H. J., Yi, X. Z., Koh, T. H., Barkham, T. M. S., Zhou, Z., & Gin, K. Y. H. (2016). Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Antimicrobial Agents and Chemotherapy, 60(12), 7449-7456. https://doi.org/10.1128/Aac.01556-16 Lerminiaux, N. A., & Cameron, A. D. S. (2019). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65(1), 34-44. https://doi.org/10.1139/cjm-2018-0275 Li, B., & Zhang, T. (2010). Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environmental Science & Technology, 44(9), 3468-3473. https://doi.org/10.1021/es903490h Li, P. (2006). Development of advanced water treatment technology using microbubbles Li, P., Takahashi, M., & Chiba, K. (2009). Degradation of phenol by the collapse of microbubbles. Chemosphere, 75(10), 1371-1375. https://doi.org/10.1016/j.chemosphere.2009.03.031 Liu, P. X., Zhang, H. M., Feng, Y. J., Yang, F. L., & Zhang, J. P. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. https://doi.org/10.1016/j.cej.2013.11.057 Liu, S., Wang, Q. H., Ma, H. Z., Huang, P. K., Li, J., & Kikuchi, T. (2010). Effect of micro-bubbles on coagulation flotation process of dyeing wastewater. Separation and Purification Technology, 71(3), 337-346. https://doi.org/10.1016/j.seppur.2009.12.021 Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G. B., Dong, B. L., Huang, X. H., Yu, L. F., Gu, D. X., Ren, H. W., Chen, X. J., Lv, L. C., He, D. D., Zhou, H. W., Liang, Z. S., Liu, J. H., & Shen, J. Z. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases, 16(2), 161-168. https://doi.org/10.1016/S1473-3099(15)00424-7 Majumder, A., Gupta, A. K., Ghosal, P. S., & Varma, M. (2021). A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. Journal of Environmental Chemical Engineering, 9(2). https://doi.org/10.1016/j.jece.2020.104812 Mao, D. Q., Yu, S., Rysz, M., Luo, Y., Yang, F. X., Li, F. X., Hou, J., Mu, Q. H., & Alvarez, P. J. J. (2015). Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Research, 85, 458-466. https://doi.org/10.1016/j.watres.2015.09.010 Martinez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887), 365-367. https://doi.org/10.1126/science.1159483 McKenna, M. (2013). Antibiotic resistance: the last resort. Nature, 499(7459), 394-396. https://doi.org/10.1038/499394a McKinney, C. W., & Pruden, A. (2012). Ultraviolet Disinfection of Antibiotic Resistant Bacteria and Their Antibiotic Resistance Genes in Water and Wastewater. Environmental Science & Technology, 46(24), 13393-13400. https://doi.org/10.1021/es303652q Medina, W. M. R., Eramo, A., & Fahrenfeld, N. L. (2022). Metabolically Active Prokaryotes and Actively Transcribed Antibiotic Resistance Genes in Sewer Systems: Implications for Public Health and Microbially Induced Corrosion. Microbial Ecology, 83(3), 583-595. https://doi.org/10.1007/s00248-021-01775-y Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hubner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review. Water Research, 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042 Mulvey, M. R., & Simor, A. E. (2009). Antimicrobial resistance in hospitals: how concerned should we be? CMAJ, 180(4), 408-415. https://doi.org/10.1503/cmaj.080239 Navon-Venezia, S., Kondratyeva, K., & Carattoli, A. (2017). Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. Fems Microbiology Reviews, 41(3), 252-275. https://doi.org/10.1093/femsre/fux013 Ni, B. J., Zeng, S. T., Wei, W., Dai, X. H., & Sun, J. (2020). Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.134899 Nnadozie, C. F., Kumari, S., & Bux, F. (2017). Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Reviews in Environmental Science and Bio-Technology, 16(3), 491-515. https://doi.org/10.1007/s11157-017-9438-x Novo, A., & Manaia, C. M. (2010). Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Applied Microbiology and Biotechnology, 87(3), 1157-1166. https://doi.org/10.1007/s00253-010-2583-6 Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405(6784), 299-304. https://doi.org/10.1038/35012500 Osinska, A., Korzeniewska, E., Harnisz, M., Felis, E., Bajkacz, S., Jachimowicz, P., Niestepski, S., & Konopka, I. (2020). Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Journal of Hazardous Materials, 381. https://doi.org/10.1016/j.jhazmat.2019.121221 Parkinson, L., Sedev, R., Fornasiero, D., & Ralston, J. (2008). The terminal rise velocity of 10-100 μm diameter bubbles in water. Journal of Colloid and Interface Science, 322(1), 168-172. https://doi.org/10.1016/j.jcis.2008.02.072 Paulus, G. K., Hornstra, L. M., Alygizakis, N., Slobodnik, J., Thomaidis, N., & Medema, G. (2019). The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. International Journal of Hygiene and Environmental Health, 222(4), 635-644. https://doi.org/10.1016/j.ijheh.2019.01.004 Peng, J. J., Wang, X. Z., Yin, F. J., & Xu, G. H. (2019). Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. Science of the Total Environment, 650, 2437-2445. https://doi.org/10.1016/j.scitotenv.2018.10.004 Petrovich, M. L., Zilberman, A., Kaplan, A., Eliraz, G. R., Wang, Y. B., Langenfeld, K., Duhaime, M., Wigginton, K., Poretsky, R., Avisar, D., & Wells, G. F. (2020). Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00153 Pruden, A., Larsson, D. G. J., Amezquita, A., Collignon, P., Brandt, K. K., Graham, D. W., Lazorchak, J. M., Suzuki, S., Silley, P., Snape, J. R., Topp, E., Zhang, T., & Zhu, Y. G. (2013). Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment. Environmental Health Perspectives, 121(8), 878-885. https://doi.org/10.1289/ehp.1206446 Qi, L. H., Li, H., Zhang, C. F., Liang, B. B., Li, J., Wang, L. G., Du, X. Y., Liu, X. L., Qiu, S. F., & Song, H. B. (2016). Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00483 Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345-360. https://doi.org/10.1016/j.scitotenv.2013.01.032 Rocha, J., & Manaia, C. M. (2020). Cell-based internal standard for qPCR determinations of antibiotic resistance indicators in environmental water samples. Ecological Indicators, 113. https://doi.org/10.1016/j.ecolind.2020.106194 Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sanchez-Melsio, A., Borrego, C. M., Barcelo, D., & Balcazar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234-242. https://doi.org/10.1016/j.watres.2014.11.021 Schluter, A., Szczepanowski, R., Puhler, A., & Top, E. M. (2007). Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. Fems Microbiology Reviews, 31(4), 449-477. https://doi.org/10.1111/j.1574-6976.2007.00074.x Sengupta, S., Chattopadhyay, M. K., & Grossart, H. P. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in Microbiology, 4. https://doi.org/10.3389/fmicb.2013.00047 Shi, Y. J., Huang, C. K., Rocha, K. C., El-Din, M. G., & Liu, Y. (2015). Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment. Bioresource Technology, 192, 219-227. https://doi.org/10.1016/j.biortech.2015.05.068 Singh, B., Shukla, N., Cho, C. H., Kim, B. S., Park, M. H., & Kim, K. (2021). Effect and application of micro- and nanobubbles in water purification. Toxicology and Environmental Health Sciences, 13(1), 9-16. https://doi.org/10.1007/s13530-021-00081-x Sommer, M. O. A., & Dantas, G. (2011). Antibiotics and the resistant microbiome. Current Opinion in Microbiology, 14(5), 556-563. https://doi.org/10.1016/j.mib.2011.07.005 Sotelo, J. L., Beltrán, F. J., Benitez, F. J., & Beltrán-Heredia, J. (1989). Henry's law constant for the ozone-water system. Water Research, 23(10), 1239-1246. https://doi.org/https://doi.org/10.1016/0043-1354(89)90186-3 Suwartha, N., Syamzida, D., Priadi, C. R., Moersidik, S. S., & Ali, F. (2020). Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03748 Takahashi, M., Chiba, K., & Li, P. (2007). Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. Journal of Physical Chemistry B, 111(6), 1343-1347. https://doi.org/10.1021/jp0669254 Temesgen, T., Bui, T. T., Han, M., Kim, T. I., & Park, H. (2017). Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science, 246, 40-51. https://doi.org/10.1016/j.cis.2017.06.011 van Hoek, A. H., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. (2011). Acquired antibiotic resistance genes: an overview. Front Microbiol, 2, 203. https://doi.org/10.3389/fmicb.2011.00203 Volkers, G., Palm, G. J., Weiss, M. S., Wright, G. D., & Hinrichs, W. (2011). Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. Febs Letters, 585(7), 1061-1066. https://doi.org/10.1016/j.febslet.2011.03.012 Wang, J. L., & Chen, H. (2020). Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Science of the Total Environment, 704. https://doi.org/10.1016/j.scitotenv.2019.135249 Wang, Q., Wang, P. L., & Yang, Q. X. (2018). Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Science of the Total Environment, 621, 990-999. https://doi.org/10.1016/j.scitotenv.2017.10.128 Wright, G. D. (2010). Antibiotic resistance in the environment: a link to the clinic? Current Opinion in Microbiology, 13(5), 589-594. https://doi.org/10.1016/j.mib.2010.08.005 Xu, J., Xu, Y., Wang, H. M., Guo, C. S., Qiu, H. Y., He, Y., Zhang, Y., Li, X. C., & Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379-1385. https://doi.org/10.1016/j.chemosphere.2014.02.040 Xu, P., Janex, M. L., Savoye, P., Cockx, A., & Lazarova, V. (2002). Wastewater disinfection by ozone: main parameters for process design. Water Research, 36(4), 1043-1055. https://doi.org/10.1016/S0043-1354(01)00298-6 Yang, W. R., Moore, I. F., Koteva, K. P., Bareich, D. C., Hughes, D. W., & Wright, G. D. (2004). TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. Journal of Biological Chemistry, 279(50), 52346-52352. https://doi.org/10.1074/jbc.M409573200 Yuan, Q. B., Guo, M. T., & Yang, J. (2014). Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant. Environmental Science-Processes & Impacts, 16(8), 1930-1937. https://doi.org/10.1039/c4em00208c Zhang, H. C., & Tikekar, R. V. (2021). Air microbubble assisted washing of fresh produce: Effect on microbial detachment and inactivation. Postharvest Biology and Technology, 181. https://doi.org/10.1016/j.postharvbio.2021.111687 Zhang, L., Liu, J. L., Liu, C., Zhang, J., & Yang, J. L. (2016). Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment. Water Science and Technology, 74(1), 138-146. https://doi.org/10.2166/wst.2016.187 Zhang, Y., Gu, A. Z., He, M., Li, D., & Chen, J. M. (2017). Subinhibitory Concentrations of Disinfectants Promote the Horizontal Transfer of Multidrug Resistance Genes within and across Genera. Environmental Science & Technology, 51(1), 570-580. https://doi.org/10.1021/acs.est.6b03132 Zhang, Y. L., Marrs, C. F., Simon, C., & Xi, C. W. (2009). Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Science of the Total Environment, 407(12), 3702-3706. https://doi.org/10.1016/j.scitotenv.2009.02.013 Zhou, H. D., & Smith, D. W. (2000). Ozone mass transfer in water and wastewater treatment: Experimental observations using a 2D laser particle dynamics analyzer. Water Research, 34(3), 909-921. https://doi.org/10.1016/S0043-1354(99)00196-7 Zhu, T. T., Su, Z. X., Lai, W. X., Zhang, Y. B., & Liu, Y. W. (2021). Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Science of the Total Environment, 776. https://doi.org/10.1016/j.scitotenv.2021.145906 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86012 | - |
| dc.description.abstract | 抗生素抗藥性對全球人類健康之威脅日益嚴重,由於污水收集未被代謝之抗生素及抗生素抗性基因(Antibiotic Resistance Genes, ARGs),且污水下水道及污水處理廠可作為ARGs傳播之熱點,若未經過適當之處理流程,將使ARGs透過放流水進入自然水體中,已被視為環境中ARGs之主要來源。醫院為高度使用抗生素之環境,且醫院廢水收集病患之排泄物及其他化學物質,故其廢水含有高濃度之抗生素、病原菌及機會性病原菌,其中亦可能含有抗生素抗性細菌及抗性基因,因此其相較於一般都市污水具有更高之傳播風險。為了解醫院廢水對下水道及其下游環境之影響,本研究先藉由比較污水下水道、都市污水處理廠與醫院廢水處理廠中ARGs之濃度差異,並選擇對應六大類抗生素之9種ARGs及1種移動遺傳因子進行分析,結果顯示醫院廢水可能是下水道ARGs之主要貢獻者,尤其是對應醫院用藥之mcr-1,且僅採用生物處理方法作為醫院廢水之處理流程,將可能導致ARGs在處理流程中擴增,因此本研究建立臭氧微米氣泡處理方法以改善處理流程對於ARGs之去除率。在經過ARG與COD降解測試後,確認使用臭氧微米氣泡於實際醫院廢水作用20分鐘可以有效降解ARGs,其對於sul1、intⅠ1、tetA、blaTEM及mcr-1之平均去除率約為3.82 ± 0.67 log,並可以透過串聯生物處理提高其COD去除率,為醫院廢水建立一個節能且有效之處理流程。 | zh_TW |
| dc.description.abstract | Antibiotic resistance poses a serious threat to global public health. Antibiotics, their metabolites, and antibiotic resistance genes (ARGs) will be introduced into wastewaters via human urine and feces; sewer systems and wastewater treatment plants (WWTPs) are believed to be potential hotspots for antibiotic resistance dissemination. If ARGs are not appropriately removed through wastewater treatment, they will be discharged into natural aquatic systems through effluent of WWTPs, and become significant contributors to ARGs in the environment. Because the highest consumption of antibiotics mainly occurs in hospitals, hospital wastewaters have been the focus as one of the high-risk point sources of antibiotics, pathogens, and opportunistic pathogens, which may also contain antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, the risk potential of hospital wastewater is further increased and higher than municipal wastewater. This study collected samples from a sewer system that receives hospital wastewater, a municipal WWTP, as well as an on-site hospital WWTP. It then quantified 9 ARGs and one mobile genetic element to learn more about the impact of hospital wastewater on its downstream environment. Results showed that the release of untreated hospital wastewater could increase ARG prevalence in sewer systems, especially mcr-1 corresponding to the last-resort antibiotics; in addition, the limited removal of ARGs through conventional biological wastewater treatment process might increase the concentration of certain ARGs in effluents. Accordingly, it is necessary to develop new technological solutions which will help to reduce ARGs in WWTP effluents. This study has confirmed that ozone microbubble technology can reduce ARGs in hospital wastewater within 20 minutes; the average removal of 5 target genes (sul1, intⅠ1, tetA, blaTEM, and mcr-1) is 3.82 ± 0.67 log. Furthermore, ozone microbubble technology followed by a biological treatment process can be applied to increase COD removal efficiencies and develop an energy-saving and practical treatment process for hospital wastewaters. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:32:49Z (GMT). No. of bitstreams: 1 U0001-1809202221395600.pdf: 6039867 bytes, checksum: ccb4c2af0c4ab2fd25a6ed4a2f13fe3a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 III Abstract V 圖目錄 X 表目錄 XII 第一章 前言 1 1.1 研究背景 1 1.2 研究目的與假說 3 第二章 文獻回顧 4 2.1 抗生素抗性基因 (Antibiotic Resistance Genes, ARGs) 4 2.1.1 ARGs之作用機制 4 2.1.2 ARGs之來源與傳播 5 2.2 污水中的ARGs 7 2.2.1 下水道 7 2.2.2 污水處理廠 7 2.2.3醫院廢水 8 2.3 污水處理廠現況 9 2.3.1 生物處理 10 2.3.2高級氧化處理 10 2.4 臭氧微米氣泡 (Ozone Microbubble) 12 2.4.1 微米氣泡之特性 12 2.4.2 臭氧微米氣泡 14 第三章 材料與方法 15 3.1 研究架構 15 3.2 ARGs定量 17 3.2.1 採樣、樣品預處理及保存 17 3.2.2 核酸萃取 (DNA extraction) 19 3.2.3 即時定量聚合酶鏈鎖反應 20 3.2.4 數位化核酸定量儀 23 3.3 批次式ARG降解實驗 24 3.3.1 大腸桿菌培養 24 3.3.2 臭氧及微米氣泡裝置 25 3.3.3 臭氧濃度檢測 26 3.3.4 實驗步驟 27 3.3.5 質體萃取 29 3.4 批次式COD降解實驗 31 3.4.1 污泥馴養槽架設 31 3.4.2 載體馴養 32 3.4.3 實驗步驟 34 3.4.4 基本水質分析 35 第四章 結果與討論 36 4.1 污水下水道之抗生素抗性基因調查 36 4.1.1 採樣、基本水質分析及目標基因特性 36 4.1.2 ARGs在下水道各採樣點之絕對濃度 37 4.1.3 ARGs在下水道各採樣點之相對濃度 38 4.2 污水處理廠之抗生素抗性基因調查 41 4.2.1 採樣及基本水質分析 41 4.2.2 細菌16S rRNA基因 41 4.2.3 污水處理廠各點之ARGs絕對濃度 42 4.2.4 污水處理廠各點之ARGs相對濃度 46 4.3 ARG降解實驗 48 4.3.1 不同曝氣方式之水中臭氧濃度比較 48 4.3.2 大腸桿菌滅活率 51 4.3.3 tetA與blaTEM-1長擴增子 52 4.3.4 tetA與blaTEM-1短擴增子 52 4.3.5 結果討論 55 4.3.6 反應速率常數 59 4.3.7 醫院廢水 61 4.4 COD降解實驗 62 4.4.1 污泥馴養結果與載體比較 62 4.4.2 醫院廢水 65 第五章 結論與建議 67 5.1 結論 67 5.2 建議 68 參考文獻 69 附錄 80 附錄1 DNeasy PowerSoil Pro Kit萃取步驟 80 附錄2 採樣紀錄表及基本水質參數 81 附錄3 16S-rRNA gene定量結果 83 附錄4 ARGs絕對濃度 84 附錄5 qPCR檢量線(相對定量) 85 附錄6 qPCR Melt Curve 85 附錄7 ARG降解實驗-E. coli滅活動力常數 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 廢水處理流程設計 | zh_TW |
| dc.subject | 抗生素抗性基因 | zh_TW |
| dc.subject | 醫院廢水 | zh_TW |
| dc.subject | 臭氧微米氣泡 | zh_TW |
| dc.subject | antibiotic resistance genes | en |
| dc.subject | hospital wastewaters | en |
| dc.subject | ozone microbubble | en |
| dc.subject | the wastewater treatment process | en |
| dc.title | 都市污水與醫院廢水之抗生素抗性基因組成以及臭氧微米氣泡於廢水處理之應用 | zh_TW |
| dc.title | Occurrence of antibiotic resistance genes in municipal and hospital wastewater & application of ozone microbubbles in wastewater treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 于昌平(Chang-Ping Yu),吳佳真(Chia-Chen Wu) | |
| dc.subject.keyword | 抗生素抗性基因,醫院廢水,臭氧微米氣泡,廢水處理流程設計, | zh_TW |
| dc.subject.keyword | antibiotic resistance genes,hospital wastewaters,ozone microbubble,the wastewater treatment process, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU202203536 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-30 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1809202221395600.pdf | 5.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
