Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡凱康
dc.contributor.authorHsin-Yi Tsengen
dc.contributor.author曾馨儀zh_TW
dc.date.accessioned2021-05-20T19:58:47Z-
dc.date.available2012-07-12
dc.date.available2021-05-20T19:58:47Z-
dc.date.copyright2010-07-12
dc.date.issued2010
dc.date.submitted2010-07-08
dc.identifier.citation王群山 (2010) 控制水稻穀粒長、穀粒寬、抽穗期、株高與穗長之數量性狀基因座的遺傳定位。國立台灣大學農藝所碩士論文
吳心平 (2008) 秈稉稻雜交BC1F1族群之不平衡分離。國立台灣大學農藝所碩士論文
徐雲碧、申宗壇、陳英與朱立煌 (1995) 水稻秈稉雜種F2群體中RFLP標計的異常分離及其染色體分布。植物學報 37 : 91-96
黃惠娟、曾清山、謝兆樞與林順福 (2003) 稉型稻雜交F2族群分子標誌偏差分離現象之探討。中華農藝 13: 241-251
楊弘遠 (2005) 水稻生殖生物學。浙江大學出版社.
劉永勝、朱立煌、孫敬三、何平、王玉忠與沈利爽 (1997) 水稻秈梗雜種生殖障礙的基因定位分析。植物學報 39:1099-1104.
劉向東、徐雪賓、盧永根與徐是雄 (1997) 水稻胚囊形成過程與分期。中國水稻科學 11:141-150.
Bailey, N. 1949. The estimation of linkage with differential viability. Heredity 3:220-225.
Broman, K., H. Wu, S. Sen, and G. Churchill. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889.
Chen, J.J., J.H. Ding, Y.D. Ouyang, H.Y. Du, J.Y. Yang, K. Cheng, J. Zhao, S.Q. Qiu, X.L. Zhang, J.L. Yao, K.D. Liu, L. Wang, C.G. Xu, X.H. Li, Y.B. Xue, M. Xia, Q. Ji, J.F. Lu, M.L. Xu, and Q.F. Zhang. 2008. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc. Natl. Acad. Sci. USA 105:11436-11441.
Cheng, R., A. Kleinhofs, and Y. Ukai. 1998. Method for mapping a partial lethal-factor locus on a molecular-marker linkage map of a backcross and doubled-haploid population. Thero. Appl. Genet. 97:293-298.
Cheng, R., A. Saito, Y. Takano, and Y. Ukai. 1996. Estimation of the position and effect of a lethal factor locus on a molecular marker linkage map. Thero. Appl. Genet. 93:494-502.
Dempster, A., N. Laird, and D. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B. 39:1-38.
Diaz, A., and M.R. Macnair. 1999. Pollen tube competition as a mechanism of prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor M-guttatus. New Phytol. 144:471-478.
Doyle, J., and J. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15.
Faris, J.D., B. Laddomada, and B.S. Gill. 1998. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319-27.
Fishman, L., and J.H. Willis. 2005. A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids. Genetics 169:347-353.
Fishman, L., and A. Saunders. 2008a. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:1559-1562.
Fishman, L., J. Aagaard, and J. Tuthill. 2008b. Toward the evolutionary genomics of gametophytic divergence: patterns of transmission ratio distortion in monkeyflower (Mimulus) hybrids reveal a complex genetic basis for conspecific pollen precedence. Evolution 62:2958-2970.
Fishman, L., A.J. Kelly, E. Morgan, and J.H. Willis. 2001. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701-1716.
Food and Agriculture Organization of the United Nations. 2007. FAOSTAT: FAO Statistical Database. http://faostat.fao.org/.
Fu, Y.B., and K. Ritland. 1994. Evidence for the partial dominance of viability genes contributing to inbreeding depression in Mimulus guttatus. Genetics 136:323-31.
Fuchs, J., M. Kuhne, and I. Schubert. 1998. Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107:272-276.
Garris, A.J., T.H. Tai, J. Coburn, S. Kresovich, and S. McCouch. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169:1631-1638.
Hackett, C.A., and L.B. Broadfoot. 2003. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33-38.
Hall, M.C., and J.H. Willis. 2005. Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications for genomic divergence. Genetics 170:375-86.
Harushima, Y., M. Nakagahra, M. Yano, T. Sasaki, and N. Kurata. 2001. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159:883-92.
Harushima, Y., N. Kurata, M. Yano, Y. Nagamura, T. Sasaki, Y. Minobe, and M. Nakagahra. 1996. Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Thero. Appl. Genet. 92:145-150.
Hedrick, P.W., and O. Muona. 1990. Linkage of viability genes to marker loci in selfing organisms. Heredity 64:67-72.
Herrero, M., and H. Dickinson. 1979. Pollen-pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. J. Cell Sci. 36:1.
Howard, D.J. 1999. Conspecific sperm and pollen precedence and speciation. Annu. Rev. Ecol. Syst. 30:109-132.
Jiang, W.Z., S.H. Chu, R.H. Piao, J.H. Chin, Y.M. Jin, J. Lee, Y.L. Qiao, L. Han, Z.Z. Piao, and H.J. Koh. 2008. Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Thero. Appl. Genet. 116:1117-1127.
Kao, C., Z. Zeng, and R. Teasdale. 1999. Multiple interval mapping for quantitative trait loci. Genetics 152:1203.
Kosambi, D.D. 1943. The estimation of map distances from recombination values. Ann. Eugen. 12:172-175.
Kumar, S., B.S. Gill, and J.D. Faris. 2007. Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol. Genet. Genomics 278:187-96.
Lander, E., P. Green, J. Abrahamson, A. Barlow, M. Daly, S. Lincoln, and L. Newburg. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181.
Li, J., P. Xu, X.N. Deng, J.W. Zhou, F.Y. Hu, J.M. Wan, and D.Y. Tao. 2008. Identification of four genes for stable hybrid sterility and an epistatic QTL from a cross between Oryza sativa and Oryza glaberrima. Euphytica 164:699-708.
Li, W., Z. Lin, and X. Zhang. 2007. A novel segregation distortion in intraspecific population of Asian cotton (Gossypium arboretum L.) detected by molecular markers. J. Genet. Genomics 34:634-40.
Liu, H.Y., C.G. Xu, and Q.F. Zhang. 2004. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice. Sex. Plant Reprod. 17:55-62.
Liu, R., and J. Meng. 2003. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317-321.
Long, Y.M., L.F. Zhao, B.X. Niu, J. Su, H. Wu, Y.L. Chen, Q.Y. Zhang, J.X. Guo, C.X. Zhuang, M.T. Mei, J.X. Xia, L. Wang, H.B. Wu, and Y.G. Liu. 2008. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc. Natl. Acad. Sci. USA 105:18871-18876.
Lorieux, M., B. Goffinet, X. Pettier, D.G.d. León, and C. Lanaud. 1995a. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Thero. Appl. Genet. 90.
Lorieux, M., X. Perrier, B. Goffinet, C. Lanaud, and D.G.d. León. 1995b. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2, F2 populations. Thero. Appl. Genet. 90:81-89.
Lu, H., J. Romero-Severson, and R. Bernardo. 2002. Chromosomal regions associated with segregation distortion in maize. Thero. Appl. Genet. 105:622-628.
Luo, L., Y.-M. Zhang, and S. Xu. 2005. A quantitative genetics model for viability selection. Heredity 94:347–355.
Lyttle, T. 1991. Segregation distorters. Annu. Rev. Genet. 25:511-581.
Lyttle, T.W. 1993. Cheaters sometimes prosper: distortion of mendelian segregation by meiotic drive. Trends Genet. 9:205-10.
Manly, K., J. Cudmore, RH, and J. Meer. 2001. Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome 12:930-932.
Matsubara, K., Khin-Thidar, and Y. Sano. 2003. A gene block causing cross-incompatibility hidden in wild and cultivated rice. Genetics 165:343-352.
Matsushita, S., T. Iseki, Y. Fukuta, E. Araki, S. Kobayashi, M. Osaki, and M. Yamagishi. 2003. Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica 134:27-32.
Moyle, L.C., and E.B. Graham. 2006. Genome-wide associations between hybrid sterility QTL and marker transmission ratio distortion. Mol. Biol. Evol. 23:973-980.
Nakagahra, M. 1972. Genetic mechanism on the distorted segregation of marker genes belonging to the eleventh linkage group in cultivated rice. Japan J. Breed 22:232-238.
Plomion, C., D. O'Malley, and C. Durel. 1995. Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Thero. Appl. Genet. 90:1028-1034.
Qiu, S., K. Liu, J. Jiang, X. Song, C. Xu, X. Li, and Q. Zhang. 2005. Delimitation of the rice wide compatibility gene S5 n to a 40-kb DNA fragment. Thero. Appl. Genet. 111:1080-1086.
Quillet, M.C., N. Madjidian, Y. Griveau, H. Serieys, M. Tersac, M. Lorieux, and A. Berville. 1995. Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect Helianthus. Thero Apple Genet 91:1195-1202.
Rick, C. 1966. Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:85.
Shivanna, K., H. Linskens, and M. Cresti. 1991. Pollen viability and pollen vigor. Thero. Appl. Genet. 81:38-42.
Song, Z., B. Lu, Y. Zhu, and J. Chen. 2002. Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon). New Phytol.:289-296.
Törjék, O., H. Witucka-Wall, R.C. Meyer, M. von Korff, B. Kusterer, C. Rautengarten, and T. Altmann. 2006. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Thero. Appl. Genet. 113:1551-61.
Vogl, C., and S. Xu. 2000. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics 155:1439-47.
Wang, D., J. Shi, S. Carlson, P. Cregan, R. Ward, and B. Diers. 2003. A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci. 43:1828.
Xu, S., and Z. Hu. 2010. Mapping quantitative trait loci using distorted markers. Int. J. Plant Genomics 2009.
Xu, S.Z. 2008. Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201-2208.
Yamagishi, M., M. Yano, Y. Fukuta, K. Fukui, M. Otani, and T. Shimada. 1996. Distorted segregation of RFLP markers in regenerated plants derived from anther culture of an F1 hybrid of rice. Genes Genet. Syst. 71:37-41.
Yamagishi, M., M. Otani, M. Higashi, Y. Fukuta, K. Fukui, and T. Shimada. 1998. Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica 103:227-234.
Young, B., R. Sherwood, and E. Bashaw. 1979. Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can. J. Bot. 57:1668-1672.
Zeng, Y.X., C.Y. Hu, Y.G. Lu, J.Q. Li, and X.D. Liu. 2009. Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice. J. Plant Integr. Plant Biol. 51:3-12.
Zhao, B., Q.M. Deng, Q.J. Zhang, J.Q. Li, S.P. Ye, Y.S. Liang, Y. Peng, and P. Li. 2006. Analysis of segregation distortion of molecular markers in F2 population of rice. Yi Chuan Xue Bao 33:449-57.
Zhi Xing, Y., A. Guo Yong, and Z. Zhi Ping. 2001. Rice bicoid-related cDNA sequence and its expression during early embryogenesis. Cell Res. 11:74-80.
Zhu, C.S., and Y.M. Zhang. 2007a. An EM algorithm for mapping segregation distortion loci. BMC Genetics 8:82-90.
Zhu, C.S., C.M. Wang, and Y.M. Zhang. 2007b. Modeling segregation distortion for viability selection I. Reconstruction of linkage maps with distorted markers. Thero. Appl. Genet. 114:295-305.
Zhu, C.S., F.H. Wang, J.F. Wang, G.J. Li, H.S. Zhang, and Y.M. Zhang. 2007c. Reconstruction of linkage maps in the distorted segregation populations of backcross, doubled haploid and recombinant inbred lines. Chin. Sci. Bull. 52:1648-1653.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8598-
dc.description.abstract不平衡分離是指雜交後代族群的對偶基因或基因型頻度偏離孟德爾定率的一種現象,造成不平衡分離的原因眾多且複雜,可將不平衡分離發生的類型分成配子型與合子型。
  為了解不平衡分離的現象,建立以台中秈10號 (TCS10) 與台稉2號 (TK2) 為親本之F2與4個正反回交 (BC1F1) 族群,以卡方適合度檢定回交族群分子標誌的分離比,再以EM演算法 (expectation and maximum algorithm) 計算不平衡分離的位置與效應的最大概度估計值。實驗結果發現存在配子型的不平衡分離基因座 (segregation distortion loci, SDL),在F1作為父本的回交族群中 (TCS10/F1、TK2/F1),定位到第3條染色體的RD0306 – RD0307與第6條染色體的RD0612,這兩個SDL存活力皆接近於0;在F1作為母本的回交族群中 (F1/TCS10、F1/TK2),定位到第6條染色體RD0603 – RD0605,SDL在F1/TCS10與F1/TK2回交族群中的存活力分別為0.69與0.46。此外,在以F1為雌親的回交族群 (F1/TCS10) 中,第11條染色體的RD1101-RD1102間也定位到一個SDL,SDL存活力為0.59。定位到的4個SDL皆偏向秈型對偶基因。然而,4個回交族群中並無發現有合子的效應發生。F2族群基因型頻度的表現也符合受到配子型不平衡基因影響的結果。
  另一方面,為了解不平衡分離是否會對連鎖距離及QTL (quantitative trait locus) 的偵測造成影響,及EM演算法的準確度,本實驗也利用模擬族群的方式來檢驗。透過模擬族群的結果顯示,在一條染色體中存在有1個SDL或2個SDL獨立在不同染色體中時並不影響連鎖距離,也不會影響QTL的偵測或EM演算法的準確度。只有在同一條染色體中存在有2個SDL時會對連鎖圖譜造成影響,2個SDL作用方向相同時會造成連鎖距離的縮短;相反的,2個SDL作用方向相反時會造成連鎖距離的增加。
zh_TW
dc.description.abstractSegregation distortion is the deviation of the segregation ratio of a locus from the expected Mendelian ratio. Many causes will lead to segregation distortion, and they could be classified into gametic effect and zygotic effect.
  In order to understand this phenomenon, a F2 and four reciprocal backcross populations from a cross between Taichung Sen 10 (indica) and Taikeng 2 (japonica) rice were created. Chi-square goodness-of-fit tests were used to determine whether the segregation ratios of backcross populations were deviated from expection. The EM algorithm was employed to obtain the maximum likelihood estimators of different populations. The results show that there are SDL of gametic effect in the backcross, but they have different effects on different mating types. When F1 was served as paternal parent in the backcross populations (TCS10/F1、TK2/F1), SDL were detected on the interval between RD0306 and RD0307 of chromosome 3 and RD0612 of chromosome 6. Both of the viabilities of SDL were nearly 0. When F1 was used as maternal parent in the backcross populations (F1/TCS10、F1/TK2), SDL was detected on the interval between RD0603 and RD0605 of chromosome 6. The viabilities of SDL was 0.69 in F1/TCS10 population, and 0.46 in F1/TK2 population. Additional SDL was detected on the interval between RD1101 and RD1102 of chromosome 11 in the backcross population from a cross between F1 and TCS10. The viability of this SDL was 0.59.The four SDL both deviated toward indica allele. However, no zygotic effect in four backcross populations was found. The genotypic frequencies of F2 appeared to be a combination of gametic effects without additional zygotic effect.
  In the meanwhile, to understand how SDL affect the genetic distance、QTL detection and the accuracy of EM algorithm, simulation experiments were carried out. According to the simulation result, the genetic distance、QTL detection and the accuracy of EM algorithm will not affect by either one SDL nor two SDL on different chromosomes.The only way that the genetic distance is affected by two SDL on the same chromosome. While the effect of two SDL are the same, the genetic distance will reduce. Otherwise, the genetic distance will increase by the two SDL with different direction.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T19:58:47Z (GMT). No. of bitstreams: 1
ntu-99-R97621109-1.pdf: 3501095 bytes, checksum: 820a8797d2184f92d42e24527309ec06 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
Abstract iii
內容目錄 v
圖目錄 vi
表目錄 vii
壹、 前言 1
貳、 前人研究 3
參、 材料與方法 14
一、 試驗族群 14
二、 水稻葉片DNA萃取與定量 16
三、 基因型定型分析 18
四、 花粉充實率檢定 23
五、 以EM演算法計算不平衡分離基因座的位置與其效應之最大概度法估計值 24
六、 模擬族群 28
1. 檢測兩分子標誌間重組率的模擬 28
2. 檢測EM演算法是否可適用於估計單一SDL的位置與效應 30
3. 檢測QTL的估計是否會受到影響 30
肆、 結果 32
一、 建立連鎖圖譜 32
二、 不同族群不平衡分離的現象 57
三、 比較不同族群不平衡分離的現象 66
四、 以EM演算法計算單一SDL的位置與效應的最大概似估計值 70
五、 模擬族群 73
1. 模擬族群連鎖距離比較 73
2. 以EM演算法計算單一SDL的位置與效應的最大概度估計值 74
3. 模擬族群之QTL偵測 74
伍、 討論 90
一、 不平衡分離的現象 90
二、 不平衡分離的影響 93
陸、 結論 96
柒、 參考文獻 97
一、 模擬族群連鎖距離比較 102
二、 模擬族群外表型分布與Normal Q-Q plot 112
dc.language.isozh-TW
dc.title秈稉稻雜交BC1F1與F2族群之不平衡分離zh_TW
dc.titleSegregation distortion in the BC1F1 and F2 populations
from a cross between indica and japonica rice.
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳凱儀,林彥蓉,劉力瑜
dc.subject.keyword水稻,不平衡分離,zh_TW
dc.subject.keywordrice,segregation distortion,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf3.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved