Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85987
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈聖峰(Sheng-Feng Shen)
dc.contributor.authorHao Chenen
dc.contributor.author陳澔zh_TW
dc.date.accessioned2023-03-19T23:31:44Z-
dc.date.copyright2022-09-27
dc.date.issued2022
dc.date.submitted2022-09-19
dc.identifier.citation1. Ala-Honkola, O., Kauranen, H., Tyukmaeva, V., Boetzl, F.A., Hoikkala, A. & Schmitt, T. (2020). Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. Insect Sci, 27, 304-316. 2. Bailey, L.D., van de Pol, M., Adriaensen, F., Arct, A., Barba, E., Bellamy, P.E. et al. (2022). Bird populations most exposed to climate change are less sensitive to climatic variation. Nat Commun, 13, 2112. 3. Bartomeus, I., Ascher, J.S., Wagner, D., Danforth, B.N., Colla, S., Kornbluth, S. et al. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci U S A, 108, 20645-20649. 4. Bradshaw, W.E. & Holzapfel, C.M. (2007). Tantalizing timeless. Science, 316, 1851-1852. 5. Bradshaw, W.E. & Holzapfel, C.M. (2008). Genetic response to rapid climate change: it's seasonal timing that matters. Mol Ecol, 17, 157-166. 6. Bradshaw, W.E. & Holzapfel, C.M. (2010). What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects. J Biol Rhythms, 25, 155-165. 7. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. 8. Buchinger, T.J., Hondorp, D.W. & Krueger, C.C. (2022). Local diversity in phenological responses of migratory lake sturgeon to warm winters. Oikos, 2022. 9. Bünning, E. (1937). Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. Deut. Bot. Ges., 54, 590-607. 10. Christ, M., Braun, N., Neuffer, J. & Kempa-Liehr, A.W. (2018). Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package). Neurocomputing, 307, 72-77. 11. Conover, D.O., Duffy, T.A. & Hice, L.A. (2009). The Covariance between Genetic and Environmental Influences across Ecological Gradients. Annals of the New York Academy of Sciences, 1168, 100-129. 12. Creighton, J.C., Heflin, N.D. & Belk, M.C. (2009). Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am Nat, 174, 673-684. 13. Cutler, D.R., Edwards, T.C., Jr., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. et al. (2007). Random forests for classification in ecology. Ecology, 88, 2783-2792. 14. Danilevsky, A. (1965). Photoperiodism and seasonal development of insects (English translation) Oliver and Boyd publishers. London 282pp. 15. Diniz, D.F.A., de Albuquerque, C.M.R., Oliva, L.O., de Melo-Santos, M.A.V. & Ayres, C.F.J. (2017). Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit Vectors, 10, 310. 16. Eggert, A., Reinking, M. & Muller, J.K. (1998). Parental care improves offspring survival and growth in burying beetles. Anim Behav, 55, 97-107. 17. Emerson, K.J., Bradshaw, W.E. & Holzapfel, C.M. (2009). Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends in Genetics, 25, 217-225. 18. Fetherston, I.A., Scott, M.P. & Traniello, J.F. (1990). Parental care in burying beetles: the organization of male and female brood‐care behavior. Ethology, 85, 177-190. 19. Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. 20. Foden, W.B., Young, B.E., Akçakaya, H.R., Garcia, R.A., Hoffmann, A.A., Stein, B.A. et al. (2018). Climate change vulnerability assessment of species. WIREs Climate Change, 10. 21. Greenfield, M.D. & Pener, M.P. (1992). Alternative schedules of male reproductive diapause in the grasshopperAnacridium aegyptium (L.): Effects of the corpora allata on sexual behavior (Orthoptera: Acrididae). Journal of Insect Behavior, 5, 245-261. 22. Hahn, D.A. & Denlinger, D.L. (2011). Energetics of insect diapause. Annu Rev Entomol, 56, 103-121. 23. Hampe, A. & Petit, R.J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecol Lett, 8, 461-467. 24. Hasegawa, Y., Takeuchi, T. & Hirai, N. (2019). Variability of photosensitive period and voltinism among populations of a butterfly, Ypthima multistriata, inhabiting similar latitudes and altitudes. Entomologia Experimentalis et Applicata, 167, 467-475. 25. Higaki, M. (2005). Effect of temperature on the termination of prolonged larval diapause in the chestnut weevil Curculio sikkimensis (Coleoptera: Curculionidae). J Insect Physiol, 51, 1352-1358. 26. Hoback, W.W., Bishop, A.A., Kroemer, J., Scalzitti, J. & Shaffer, J.J. (2004). Differences among antimicrobial properties of carrion beetle secretions reflect phylogeny and ecology. J Chem Ecol, 30, 719-729. 27. Hopkins, A.D. (1920). The bioclimatic law. Journal of the Washington Academy of Sciences, 10, 34-40. 28. Hota, H., Handa, R. & Shrivas, A. (2017). Time series data prediction using sliding window based RBF neural network. International Journal of Computational Intelligence Research, 13, 1145-1156. 29. Hut, R.A., Paolucci, S., Dor, R., Kyriacou, C.P. & Daan, S. (2013). Latitudinal clines: an evolutionary view on biological rhythms. Proceedings of the Royal Society B: Biological Sciences, 280, 20130433. 30. Hwang, W. & Shiao, S.-F. (2011). Dormancy and the influence of photoperiod and temperature on sexual maturity in Nicrophorus nepalensis (Coleoptera: Silphidae). Insect Science, 18, 225-233. 31. Ikeno, T., Tanaka, S.I., Numata, H. & Goto, S.G. (2010). Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol, 8, 116. 32. Kaniewska, M.M., Vaneckova, H., Dolezel, D. & Kotwica-Rolinska, J. (2020). Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus. Front Physiol, 11, 242. 33. Kawecki, T.J. & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241. 34. Keller, M.L., Howard, D.R. & Hall, C.L. (2019). Spatiotemporal niche partitioning in a specious silphid community (Coleoptera: Silphidae Nicrophorus). Naturwissenschaften, 106, 57. 35. Kharouba, H.M., Ehrlen, J., Gelman, A., Bolmgren, K., Allen, J.M., Travers, S.E. et al. (2018). Global shifts in the phenological synchrony of species interactions over recent decades. Proc Natl Acad Sci U S A, 115, 5211-5216. 36. Koštál, V. (2006). Eco-physiological phases of insect diapause. J Insect Physiol, 52, 113-127. 37. Krabbenhoft, T.J., Myers, B.J.E., Wong, J.P., Chu, C., Tingley, R.W., 3rd, Falke, J.A. et al. (2020). FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes. Sci Data, 7, 124. 38. Kumar, A.V., Zimova, M., Sparks, J.R. & Mills, L.S. (2020). Snow-mediated plasticity does not prevent camouflage mismatch. Oecologia, 194, 301-310. 39. Kurota, H. & Shimada, M. (2003). Photoperiod-dependent adult diapause within a geographical cline in the multivoltine bruchid Bruchidius dorsalis. Entomologia Experimentalis et Applicata, 106, 177-185. 40. Lankinen, P., Tyukmaeva, V.I. & Hoikkala, A. (2013). Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. J Insect Physiol, 59, 745-751. 41. Lindestad, O., Schmalensee, L., Lehmann, P., Gotthard, K. & Diamond, S. (2020). Variation in butterfly diapause duration in relation to voltinism suggests adaptation to autumn warmth, not winter cold. Functional Ecology, 34, 1029-1040. 42. Lindestad, O., Wheat, C.W., Nylin, S. & Gotthard, K. (2019). Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Ecology, 100, e02550. 43. Macgregor, C.J., Thomas, C.D., Roy, D.B., Beaumont, M.A., Bell, J.R., Brereton, T. et al. (2019). Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat Commun, 10, 4455. 44. Masaki, S. (1980). Summer diapause. Annual Review of Entomology, 25, 1-25. 45. Masaki, S. (1999). Seasonal adaptations of insects as revealed by latitudinal diapause clines. Entomological Science, 2, 539-550. 46. Matsunaga, K., Takahashi, H., Yoshida, T. & Kimura, M.T. (1995). Feeding, reproductive and locomotor activities in diapausing and non-diapausing adults of Drosophila. Ecological Research, 10, 87-93. 47. McKown, A.D., Klapste, J., Guy, R.D., El-Kassaby, Y.A. & Mansfield, S.D. (2018). Ecological genomics of variation in bud-break phenology and mechanisms of response to climate warming in Populus trichocarpa. New Phytol, 220, 300-316. 48. Meuti, M.E., Stone, M., Ikeno, T. & Denlinger, D.L. (2015). Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. J Exp Biol, 218, 412-422. 49. Moore, I.T., Bonier, F. & Wingfield, J.C. (2005). Reproductive asynchrony and population divergence between two tropical bird populations. Behavioral Ecology, 16, 755-762. 50. Musolin, D.L. & Numata, H. (2003). Timing of diapause induction and its life-history consequences in Nezara viridula : is it costly to expand the distribution range? Ecological Entomology, 28, 694-703. 51. Nahrung, H.F. & Merritt, D. (1999). Moisture is required for the termination of egg diapause in the chrysomelid beetle, Homichloda barkeri. Entomologia Experimentalis et Applicata, 93, 201-207. 52. Nisimura, T., Kon, M. & Numata, H. (2002). Bimodal life cycle of the burying beetle Nicrophorus quadripunctatus in relation to its summer reproductive diapause. Ecological Entomology, 27, 220-228. 53. Noriyuki, S., Akiyama, K. & Nishida, T. (2011). Life-history traits related to diapause in univoltine and bivoltine populations of Ypthima multistriata (Lepidoptera: Satyridae) inhabiting similar latitudes. Entomological Science, 14, 254-261. 54. Oneill, G.A., Hamann, A. & Wang, T. (2008). Accounting for population variation improves estimates of the impact of climate change on species growth and distribution. Journal of Applied Ecology, 45, 1040-1049. 55. Parmesan, C., Morecroft, M., Trisurat, Y., Adrian, R., Anshari, G., Arneth, A. et al. (2022). Terrestrial and Freshwater Ecosystems and their Services. Climate Change 2022: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. . 56. Pereira, H.M., Leadley, P.W., Proenca, V., Alkemade, R., Scharlemann, J.P., Fernandez-Manjarres, J.F. et al. (2010). Scenarios for global biodiversity in the 21st century. Science, 330, 1496-1501. 57. Pfeiffenberger, C., Lear, B.C., Keegan, K.P. & Allada, R. (2010). Locomotor activity level monitoring using the Drosophila Activity Monitoring (DAM) System. Cold Spring Harb Protoc, 2010, pdb prot5518. 58. Phillimore, A.B., Hadfield, J.D., Jones, O.R. & Smithers, R.J. (2010). Differences in spawning date between populations of common frog reveal local adaptation. Proc Natl Acad Sci U S A, 107, 8292-8297. 59. Pukowski, E. (1933). Ökologische untersuchungen an Necrophorus F. Zeitschrift für Morphologie und Ökologie der Tiere, 518-586. 60. Ritz, C., Baty, F., Streibig, J.C. & Gerhard, D. (2015). Dose-Response Analysis Using R. PLoS One, 10, e0146021. 61. Roenneberg, T., Daan, S. & Merrow, M. (2003). The art of entrainment. J Biol Rhythms, 18, 183-194. 62. Ruberson, J.R., Shen, Y.J. & Kring, T.J. (2000). Photoperiodic Sensitivity and Diapause in the Predator Orius insidiosus (Heteroptera: Anthocoridae). Annals of the Entomological Society of America, 93, 1123-1130. 63. Ruf, T. & Geiser, F. (2015). Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc, 90, 891-926. 64. Salminen, T.S. & Hoikkala, A. (2013). Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. J Insect Physiol, 59, 450-457. 65. Savolainen, O., Lascoux, M. & Merila, J. (2013). Ecological genomics of local adaptation. Nat Rev Genet, 14, 807-820. 66. Scott, M.P. (1998). The ecology and behavior of burying beetles. Annual review of entomology, 43, 595-618. 67. Sikes, D.S., Madge, R.B. & Trumbo, S.T. (2006). Revision of Nicrophorus in part: new species and inferred phylogeny of the nepalensis-group based on evidence from morphology and mitochondrial DNA (Coleoptera: Silphidae: Nicrophorinae). Invertebrate Systematics, 20, 305-365. 68. Socha, R. & Zemek, R. (2008). Locomotor activity in adult Pyrrhocoris apterus (Heteroptera) in relation to sex, physiological status and wing dimorphism. Physiological Entomology, 25, 383-389. 69. Stoner, D.C., Sexton, J.O., Nagol, J., Bernales, H.H. & Edwards, T.C., Jr. (2016). Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes. PLoS One, 11, e0148780. 70. Sun, S.J., Rubenstein, D.R., Chen, B.F., Chan, S.F., Liu, J.N., Liu, M. et al. (2014). Climate-mediated cooperation promotes niche expansion in burying beetles. Elife, 3, e02440. 71. Takagi, S. & Miyashita, T. (2008). Host Plant Quality Influences Diapause Induction of Byasa alcinous (Lepidoptera: Papilionidae). Annals of the Entomological Society of America, 101, 392-396. 72. Tallamy, D.W. & Wood, T.K. (1986). Convergence patterns in subsocial insects. Annual review of entomology, 31, 369-390. 73. Thomas, D.W., Blondel, J., Perret, P., Lambrechts, M.M. & Speakman, J.R. (2001). Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science, 291, 2598-2600. 74. Thyselius, M. & Nordstrom, K. (2016). Hoverfly locomotor activity is resilient to external influence and intrinsic factors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 202, 45-54. 75. Tian, Y., Maekawa, T., Hara, T., Yokomori, Y. & Kitagawa, T. (2021). NaviMine: A tool for mining trajectories through behavior prediction. In: 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). IEEE, pp. 502-507. 76. Trumbo, S.T. (1990). Regulation of brood size in a burying beetle,Nicrophorus tomentosus (Silphidae). Journal of Insect Behavior, 3, 491-500. 77. Tsai, H.Y., Rubenstein, D.R., Chen, B.F., Liu, M., Chan, S.F., Chen, D.P. et al. (2020a). Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. Elife, 9. 78. Tsai, H.Y., Rubenstein, D.R., Fan, Y.M., Yuan, T.N., Chen, B.F., Tang, Y. et al. (2020b). Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. Nat Commun, 11, 1398. 79. Turbill, C., Bieber, C. & Ruf, T. (2011). Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc Biol Sci, 278, 3355-3363. 80. Tyukmaeva, V., Lankinen, P., Kinnunen, J., Kauranen, H. & Hoikkala, A. (2020). Latitudinal clines in the timing and temperature‐sensitivity of photoperiodic reproductive diapause in Drosophila montana. Ecography, 43, 759-768. 81. Tyukmaeva, V.I., Salminen, T.S., Kankare, M., Knott, K.E. & Hoikkala, A. (2011). Adaptation to a seasonally varying environment: a strong latitudinal cline in reproductive diapause combined with high gene flow in Drosophila montana. Ecol Evol, 1, 160-168. 82. Urbanova, V., Bazalova, O., Vaneckova, H. & Dolezel, D. (2016). Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol, 70, 184-190. 83. Valletta, J.J., Torney, C., Kings, M., Thornton, A. & Madden, J. (2017). Applications of machine learning in animal behaviour studies. Animal Behaviour, 124, 203-220. 84. Velarde, R.A., Wiedenmann, R.N. & Voegtlin, D.J. (2002). Influence of photoperiod on the overwintering induction of Galerucella calmariensis L. BioControl, 47, 587-601. 85. Visser, M. (2022). Phenology: Climate change is shifting the rhythm of nature. In: Frontiers 2022: Noise, Blazes and Mismatches: Emerging Issues of Environmental Concern. United Nations Environment Programme (UNEP), pp. 41-58. 86. Visser, M.E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc Biol Sci, 275, 649-659. 87. Wang, H.Y., Shen, S.F., Chen, Y.S., Kiang, Y.K. & Heino, M. (2020). Life histories determine divergent population trends for fishes under climate warming. Nat Commun, 11, 4088. 88. Williams, G. (1966). Adaptation and natural selection Princeton University Press. Princeton, NJ. 89. Wilson, D.S. & Knollenberg, W.G. (1984). Food Discrimination and Ovarian Development in Burying Beetles (Coleoptera: Silphidae: Nicrophorus). Annals of the Entomological Society of America, 77, 165-170. 90. Wilson, D.S., Knollenberg, W.G. & Fudge, J. (1984). Species packing and temperature dependent competition among burying beetles (Silphidae,Nicrophorus). Ecological Entomology, 9, 205-216. 91. Wilsterman, K., Ballinger, M.A., Williams, C.M. & Lemaître, J.F. (2020). A unifying, eco‐physiological framework for animal dormancy. Functional Ecology, 35, 11-31. 92. Zhai, Y., Lin, Q., Zhang, J., Zhang, F., Zheng, L. & Yu, Y. (2016). Adult reproductive diapause in Drosophila suzukii females. Journal of Pest Science, 89, 679-688. 93. Zimova, M., Mills, L.S. & Nowak, J.J. (2016). High fitness costs of climate change-induced camouflage mismatch. Ecol Lett, 19, 299-307. 94. Zimova, M., Sirén, A.P.K., Nowak, J.J., Bryan, A.M., Ivan, J.S., Morelli, T.L. et al. (2019). Local climate determines vulnerability to camouflage mismatch in snowshoe hares. Global Ecology and Biogeography, 29, 503-515.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85987-
dc.description.abstract氣候變遷已對全球的生態系造成衝擊;動植物的物候逐年改變,也加劇了各物種間的物候不匹配。研究同種不同族群的物候適應性,將有助於預測其在環境變遷下的生態後果。許多生物的物候時程隨緯度漸變;然而,此通則運用在局部地理尺度的鄰近族群時卻有其侷限性。儘管部分研究嘗試提出解釋,說明區域性氣候條件可能也會影響族群的物候時程,但卻未曾有實證研究探討其生理適應機制。因此,本研究以相鄰的尼泊爾埋葬蟲(Nicrophorus nepalensis)島鏈族群:日本的奄美大島、沖繩和臺灣的烏來,來瞭解當地溫度條件如何決定夏季滯育物候的啟動時程。我們發現,不同族群的埋葬蟲演化出顯著的滯育時程差異,且不隨緯度漸變。反而與滯育時間生態區位分化的預測一致:受春季高溫影響,沖繩族群較高緯的奄美與低緯的烏來族群更早開始休眠。本研究彰顯區域性的氣候條件對物候的適應至關重要,此結果可用於後續評估不同族群在暖化下的脆弱程度。zh_TW
dc.description.abstractAnthropogenic climate change has been threatening the global ecosystem by inducing shift of circannual rhythms and thus exacerbates phenological mismatch between interactive species or between species and environment. Studying phenological adaptations of different populations helps to predict the ecological consequences of environmental changes. The phenological timing of many organisms varies along the latitudinal gradient; however, this general rule has limitations when applied to neighboring populations at regional geographic scales. Although some studies have proposed a tentative explanation that local climatic conditions may also affect the phenological timing of populations, no empirical study has ever been conducted to investigate the physiological mechanisms underlying the adaptive pattern. Here, we used burying beetle (Nicrophorus nepalensis) populations from three neighboring islands (Amami Oshima and Okinawa in Japan, and Wulai in Taiwan) to examine how local temperature conditions induce their summer diapause. Results showed that the three burying beetle populations had significantly different diapause induction timing without latitudinally clinal variation. Instead, it was consistent with the prediction of temporal niche partition: the Okinawa population entered reproductive diapause earlier than the Amami and Wulai populations due to higher spring temperature in Okinawa than that in Amami and Wulai. This study highlights the important role of local climatic conditions in phenological adaptation, and the results lay the foundation for future evaluation of bury beetle population vulnerability under a changing world.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:31:44Z (GMT). No. of bitstreams: 1
U0001-1809202200143000.pdf: 8161793 bytes, checksum: 34d5ce3adacd750e86e91f7d3ca833f4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 v 圖目錄 vii 表目錄 viii 第一章  前言 1 1.1  物候節律隨緯度漸變:通則的侷限性 1 1.2  區域性氣候條件對滯育物候的影響 2 1.3  埋葬蟲族群滯育時程的分化:棲地溫度的重要性 3 第二章  材料與方法 5 2.1  研究物種 5 2.1.1  尼泊爾埋葬蟲的生活史與繁殖物候 5 2.1.2  實驗室族群的建立與維持 6 2.2  實驗設計與處理 6 2.3  日周活動量實驗 7 2.3.1  活動量的測量 7 2.3.2  活動量資料的特徵提取與隨機森林模型的生成 8 2.4  共園繁殖實驗 9 2.5  滯育狀態的評估 10 2.6  氣候資料 11 2.7  統計分析 11 第三章  研究結果 13 3.1  從棲地環境差異預測時間生態區位的分化 13 3.2  日照長度對埋葬蟲配對繁殖光週期的影響 13 3.3  日照長度對埋葬蟲個體日周活動的影響 14 3.4  以埋葬蟲個體的日周活動預測其年周滯育表現 15 3.5  區域性的氣候條件驅動不隨緯度漸變的滯育時程 16 第四章  討論 17       4.1  棲地溫度條件對埋葬蟲滯育時程的重要性 17 4.2  埋葬蟲滯育時程的地理差異源自遺傳上的分化 17 4.3  區域性氣候特徵決定族群的物候節律 18 4.4  族群物候的地區性適應在氣候變遷下的生態後果 19 4.5  季節性的滯育表現與日周活動之間的關係 19 4.6  研究族群間功能性狀的差異是評估物種脆弱度的關鍵 20 第五章  結論 22 參考文獻 23
dc.language.isozh-TW
dc.subject滯育時程zh_TW
dc.subject尼泊爾埋葬蟲zh_TW
dc.subject區域性氣候條件zh_TW
dc.subject緯度漸變zh_TW
dc.subject物候zh_TW
dc.subjectlocal climate conditionen
dc.subjectburying beetle (Nicrophorus nepalensis)en
dc.subjectphenologyen
dc.subjectdiapause timingen
dc.subjectlatitudinal clineen
dc.title區域性氣候條件決定埋葬蟲族群滯育的時程zh_TW
dc.titleLocal climate condition determines diapause timing in burying beetle populationsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0003-0906-795X
dc.contributor.oralexamcommittee李壽先(Shou-Hsien Li),王慧瑜(Hui-Yu Wang),洪志銘(Chih-Ming Hung)
dc.subject.keyword尼泊爾埋葬蟲,物候,滯育時程,緯度漸變,區域性氣候條件,zh_TW
dc.subject.keywordburying beetle (Nicrophorus nepalensis),phenology,diapause timing,latitudinal cline,local climate condition,en
dc.relation.page48
dc.identifier.doi10.6342/NTU202203518
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
dc.date.embargo-lift2022-09-27-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-1809202200143000.pdf7.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved