請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85976
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李綱 | zh_TW |
dc.contributor.advisor | Kang Li | en |
dc.contributor.author | 許俊彥 | zh_TW |
dc.contributor.author | Chun-Yen Hsu | en |
dc.date.accessioned | 2023-03-19T23:31:16Z | - |
dc.date.available | 2024-02-27 | - |
dc.date.copyright | 2022-10-19 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] SAE International. (2021, May 3). SAE Levels of Driving Automation™ Refined for Clarity and International Audience. Retrieved, April 19, 2022, from https://www.sae.org/blog/sae-j3016-update
[2] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, "Development of Autonomous Car-Part I: Distributed System Architecture and Development Process," Ieee Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7131-7140, Dec 2014, doi: 10.1109/tie.2014.2321342. [3] J. Pimentel, "Achieving 10-9 Dependability with Drive-by-Wire Systems," 2006. [4] H. Zhao et al., "Safety score: A quantitative approach to guiding safety-aware autonomous vehicle computing system design," in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020: IEEE, pp. 1479-1485. [5] 林冠吾,’自動駕駛系統架構與失效策略設計以及安全分析研究’ ,碩士論文,機械工程學研究所,國立臺灣大學,2020 [6] D. Åsljung, J. Nilsson, and J. Fredriksson, "Using extreme value theory for vehicle level safety validation and implications for autonomous vehicles," IEEE Transactions on Intelligent Vehicles, vol. 2, no. 4, pp. 288-297, 2017. [7] P. Koopman and M. Wagner, "Challenges in autonomous vehicle testing and validation," SAE International Journal of Transportation Safety, vol. 4, no. 1, pp. 15-24, 2016. [8] Y. El-Hansali, S. Farrag, A. Yasar, E. Shakshuki, and K. Al-Abri, "Using Surrogate Measures to Evaluate the Safety of Autonomous Vehicles," Procedia Computer Science, vol. 191, pp. 151-159, 2021. [9] C. D. Gadda, P. Yih, and J. C. Gerdes, "Incorporating a model of vehicle dynamics in a diagnostic system for steer-by-wire vehicles," in Proceedings of AVEC, 2004, vol. 4, pp. 779-784. [10] 蘇泓珈,'自駕車量自主定位系統之多感測器故障偵測與隔離方法',碩士論文,機械工程學研究所,國立臺灣大學,2021 [11] W. Huang and X. Su, "Design of a fault detection and isolation system for intelligent vehicle navigation system," International Journal of Navigation and Observation, vol. 2015, 2015. [12] Y. Zhu and L. Zhou, "A novel approach for fault detection in integrated navigation systems," IEEE Access, vol. 8, pp. 178954-178961, 2020. [13] J. S. Im, F. Ozaki, T. K. Yeu, and S. Kawaji, "Model-based fault detection and isolation in steer-by-wire vehicle using sliding mode observer," Journal of mechanical science and technology, vol. 23, no. 8, pp. 1991-1999, 2009. [14] K. Zhang, B. Jiang, X.-G. Yan, and Z. Mao, "Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device," ISA transactions, vol. 63, pp. 49-59, 2016. [15] H. Wang, Q. Wang, H. Zhang, and J. Han, "H-Infinity Observer for Vehicle Steering System with Uncertain Parameters and Actuator Fault," in Actuators, 2022, vol. 11, no. 2: MDPI, p. 43. [16] E. Nobrega, M. Abdalla, and K. M. Grigoriadis, "LMI-based filter design for fault detection and isolation," in Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187), 2000, vol. 5: IEEE, pp. 4329-4334. [17] A. Farhat, D. Koenig, and O. Sename, "Fault detection for LPV systems: Loop shaping H_ approach," IFAC-PapersOnLine, vol. 48, no. 26, pp. 188-193, 2015. [18] P. Freeman, R. Pandita, N. Srivastava, and G. J. Balas, "Model-based and data-driven fault detection performance for a small UAV," IEEE/ASME Transactions on mechatronics, vol. 18, no. 4, pp. 1300-1309, 2013. [19] F. Baghernezhad and K. Khorasani, "Computationally intelligent strategies for robust fault detection, isolation, and identification of mobile robots," Neurocomputing, vol. 171, pp. 335-346, 2016. [20] G. Zhang et al., "Fault-type identification and fault estimation of the active steering system of an electric vehicle in normal driving conditions," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 231, no. 12, pp. 1679-1692, 2017. [21] V. Judalet, S. Glaser, D. Gruyer, and S. Mammar, "Fault detection and isolation via the interacting multiple model approach applied to drive-by-wire vehicles," Sensors, vol. 18, no. 7, p. 2332, 2018. [22] S. Anwar and L. Chen, "An analytical redundancy-based fault detection and isolation algorithm for a road-wheel control subsystem in a steer-by-wire system," IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2859-2869, 2007. [23] Y. Fang, H. Min, W. Wang, Z. Xu, and X. Zhao, "A fault detection and diagnosis system for autonomous vehicles based on hybrid approaches," IEEE Sensors Journal, vol. 20, no. 16, pp. 9359-9371, 2020. [24] M. Haque, M. N. Shaheed, and S. Choi, "Deep learning based micro-grid fault detection and classification in future smart vehicle," in 2018 IEEE Transportation Electrification Conference and Expo (ITEC), 2018: IEEE, pp. 1082-107. [25] M. Ammiche, A. Kouadri, L. M. Halabi, A. Guichi, and S. Mekhilef, "Fault detection in a grid-connected photovoltaic system using adaptive thresholding method," Solar Energy, vol. 174, pp. 762-769, 2018. [26] Y. Sun, W. Qin, Z. Zhuang, and H. Xu, "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, vol. 32, no. 7, pp. 2007-2021, 2021. [27] H. Zhao, H. Liu, W. Hu, and X. Yan, "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable energy, vol. 127, pp. 825-834, 2018. [28] H. Zhang, Q. Zhang, J. Liu, and H. Guo, "Fault detection and repairing for intelligent connected vehicles based on dynamic Bayesian network model," IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2431-2440, 2018. [29] C. Lou, X. Li, and M. A. Atoui, "Bayesian network based on an adaptive threshold scheme for fault detection and classification," Industrial & Engineering Chemistry Research, vol. 59, no. 34, pp. 15155-15164, 2020. [30] C. Huang, F. Naghdy, and H. Du, "Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems," IEEE Transactions on Control Systems Technology, vol. 26, no. 5, pp. 1810-1817, 2017. [31] L. Zhang, Z. Wang, X. Ding, S. Li, and Z. Wang, "Fault-tolerant control for intelligent electrified vehicles against front wheel steering angle sensor faults during trajectory tracking," IEEE Access, vol. 9, pp. 65174-65186, 2021. [32] 李成之等人,"線控共用底盤開發與次系統HiL測試設備建置",國立台灣大學機械工程研究所,2020 [33] 葉育豪等人,"整合線控電動貨車XV與AMR之子母車運輸系統開發",國立台灣大學機械工程研究所,2021 [34] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011. [35] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005. [36] 吳明軒,"以模組化架構發展自動駕駛車輛 之車道維持控制結合輪胎防滑決策研究",碩士論文,機械工程學研究所,國立臺灣大學,2016 [37] 劉昌煥,"交流電機控制", 4nd ed.,東華書局,2008 [38] D.-W. Gu, P. Petkov, and M. M. Konstantinov, Robust control design with MATLAB®. Springer Science & Business Media, 2005. [39] 袁鼎,"以駕駛者轉向及車輛動態 模型為基礎之道路追隨控制系統研發",碩士論文,機械工程學研究所,國立臺灣大學,2015 [40] J. Huang, H.-S. Tan, and F. Bu, "Preliminary steps in understanding a target & control based driver steering model," in Proceedings of the 2011 American Control Conference, 2011: IEEE, pp. 5243-5248. [41] J. P. Wann and D. K. Swapp, "Why you should look where you are going," Nature neuroscience, vol. 3, no. 7, pp. 647-648, 2000. [42] J. Chen and R. J. Patton, Robust model-based fault diagnosis for dynamic systems. Springer Science & Business Media, 2012. [43] F. Anstett, G. Millérioux, and G. Bloch, "Polytopic observer design for LPV systems based on minimal convex polytope finding," Journal of Algorithms & Computational Technology, vol. 3, no. 1, pp. 23-43, 2009. [44] K. Tanaka and M. Sugeno, "Stability analysis and design of fuzzy control systems," Fuzzy sets and systems, vol. 45, no. 2, pp. 135-156, 1992. [45] MathWorks . LMI Solvers. August 2, 2022.from https://www.mathworks.com/help/robust/lmis.html [46] Hassan K. Khalil, Nonlinear Systems Third Edition, Prentice Hall,2002 [47] W. Hongyu, Y. Zhiqiang, F. Yong, Q. Yunqian, and L. Zhiming, "Development of pure electric vehicle powertrain controller based on hardware in the loop platform," in 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), 2015: IEEE, pp. 498-502. [48] X. Zhao et al., "Development and application of connected vehicle technology test platform based on driving simulator: Case study," Accident Analysis & Prevention, vol. 161, p. 106330, 2021. [49] A. Albers and T. Düser, "Implementation of a vehicle-in-the-loop development and validation platform," in FISITA World automotive congress, 2010, vol. 2010. [50] 呂佳穎,"結合類神經網路及失效模式分析之線控轉向系統即時異常偵測",碩士論文,機械工程學研究所,國立臺灣大學,2021 [51] P. Eykhoff, System identification. Wiley London, 1974. [52] G. Juez, E. Amparan, R. Lattarulo, J. P. Rastelli, A. Ruiz, and H. Espinoza, "Safety assessment of automated vehicle functions by simulation-based fault injection," in 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2017: IEEE, pp. 214-219. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85976 | - |
dc.description.abstract | 本篇論文探討自主駕駛車輛之車輛動態、動力、轉向、煞車次系統的動態行為,以開發線控化底盤系統之故障偵測與隔離方法在自駕車運行時偵測次系統故障以及車輛不良行為,在必要的時候可以透過此隔離方法辨別故障來源,在意外發生前修正決策層命令。本論文研究之車輛是一三噸重電動貨卡其動力系統搭載95kw的永磁同步馬達作後輪驅動,轉向系統與煞車系統皆已線控化由伺服馬達取代踏板與方向盤作驅動。
此故障偵測與隔離方法之研究目的在於確保自主駕駛車輛能夠安全地運行,本論文將探討電動貨卡複雜的動態行為並將其區分成車輛、輪胎以及動力、轉向、煞車五個部份作分析與建模,車輛控制則包含縱向的巡航控制(cruise control)以及側向的基於目標與控制(Target & Control)模型之道路追隨控制。此研究將使用實驗室近期開發的XiL(X in the Loop)實虛整合模擬驗證系統作模擬與測試,此驗證系統結合ANSYS VRXPERIENCE軟體的虛擬環境、車輛動力學以及dspace輔助開發功能幫助後續的研究工作。 | zh_TW |
dc.description.abstract | This thesis discusses the vehicle dynamics and subsystems about drive、steering and brake. Developing a fault diagnosis system for actuators to detect sub-system faults when the autonomous vehicle is running. When necessary, the fault source can be identified through the fault diagnosis system. It will correct the control command before the accident occurs. The thesis studies a 3-ton electric truck whose drive system is equipped with a 95kw permanent magnet synchronous motor for rear-wheel drive. Steering system and braking system have been controlled by wire, the system has be driven by servo motor instead of pedal and steering wheel.
The purpose of the research of the fault detection and isolation method is to ensure the safe operation of autonomous vehicles. This paper will discuss the complex dynamic behavior of electric trucks and distinguish them into five parts: vehicle, tire, drive, steering and braking for analysis and modeling. The vehicle controls include longitudinal cruise control and lateral lane keeping control based on Target & Control model. This research will be simulated and tested by the XiL (X in the Loop) real-virtual integrated simulation verification system that recently developed by the laboratory. This verification system combines the virtual environment and vehicle dynamics of ANSYS VRXPERIENCE, and dspace software to help research work. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:31:16Z (GMT). No. of bitstreams: 1 U0001-1909202214422600.pdf: 14809161 bytes, checksum: b4481957fcbee5f67d711485a795ae1f (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 xvi Chapter1 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 Chapter2 XV車輛系統模型 9 2.1 車輛模型 10 2.1.1 車輛動態模型 10 2.1.2 結合輪胎力之車輛動態模型 13 2.2 次系統模型 20 2.2.1 動力系統模型 20 2.2.2 轉向系統模型 24 2.2.3 液壓煞車模型 27 Chapter3 車輛控制 32 3.1 巡航控制(Cruise control) 32 3.2 T&C駕駛者模型之道路追隨控制 34 Chapter4 故障偵測與隔離 38 4.1 分析冗餘 (Analytical Redundancy) 38 4.2 故障偵測原理 39 4.3 以H∞最佳化作故障偵測器設計 42 4.4 非線性系統之模糊模型 59 4.5 故障隔離 62 4.6 閥值產生器 63 Chapter5 實驗與資料討論 65 5.1 實驗設備與XiL系統介紹 65 5.2 系統與次系統建模實驗 73 5.3 XiL電腦模擬與硬體測試 88 Chapter6 未來工作建議 159 參考文獻 160 | - |
dc.language.iso | zh_TW | - |
dc.title | 線控化底盤系統故障偵測與隔離方法與XiL模擬驗證 | zh_TW |
dc.title | Fault Detection and Isolation Methods for X-by-wire Chassis and XiL Simulation Validation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊宏智;詹景堯 | zh_TW |
dc.contributor.oralexamcommittee | Hong-Tsu Young;Ching-Yao Chan | en |
dc.subject.keyword | 車輛控制系統,線控化底盤系統,H∞濾波器,殘值產生器,適應性閥值產生器,故障偵測與隔離, | zh_TW |
dc.subject.keyword | vehicle control system,X-by-wire chassis system,H infinity filter,residual generator,adaptive threshold generator,fault detection and isolation, | en |
dc.relation.page | 163 | - |
dc.identifier.doi | 10.6342/NTU202203570 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-22 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
dc.date.embargo-lift | 2024-09-19 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf | 14.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。