Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭茂坤(Mao-Kuen Kuo)
dc.contributor.authorYun-Cheng Kuen
dc.contributor.author古運承zh_TW
dc.date.accessioned2023-03-19T23:31:11Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-21
dc.identifier.citationWood, R. W. 'XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum.' London Edinburgh Philos. Mag. J. Sci 4(21): 396-402, 1902. Stratton, J. A. and Chu, L. J. 'Diffraction theory of electromagnetic waves.' Phys Rev 56(1): 99-107, 1939. Ritchie, R. H. 'Plasma losses by fast electrons in thin films.' Phys Rev 106(5): 874, 1957. Kelly, K. L., Coronado, E., Zhao, L. L. and Schatz, G. C. 'The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.' ACS Publications. 107: 668-677, 2003. Yin, L., Vlasko-Vlasov, V., Rydh, A., Pearson, J., Welp, U., Chang, S.-H., Gray, S., Schatz, G. C., Brown, D. and Kimball, C. W. 'Surface plasmons at single nanoholes in Au films.' Appl. Phys. Lett 85(3): 467-469, 2004. Wu, L., Bai, P. and Li, E. P. 'Designing surface plasmon resonance of subwavelength hole arrays by studying absorption.' JOSA B 29(4): 521-528, 2012. Donev, E. U., Hart, F. X., Nkurunziza, B. I., Bertschinger, K., Zhang, J. and Suh, J. Y. 'Parametric study of optical transmission through plasmonic hole arrays modulated by the phase transition of vanadium dioxide.' OSA Continuum 3(8): 2106-2133, 2020. Ferreira, J., Santos, M. J., Rahman, M. M., Brolo, A. G., Gordon, R., Sinton, D. and Girotto, E. M. 'Attomolar protein detection using in-hole surface plasmon resonance.' J. Am. Chem. Soc. 131(2): 436-437, 2009. Blanchard-Dionne, A.-P. and Meunier, M. 'Multiperiodic nanohole array for high precision sensing.' Nanophotonics 8(2): 325-329, 2019. Smith, M. and Gbur, G. 'Coherence resonances and band gaps in plasmonic hole arrays.' Phys. Rev. A 99(2): 023812, 2019. Ishii, S., Shalaev, V. M. and Kildishev, A. V. 'Holey-metal lenses: sieving single modes with proper phases.' Nano Lett. 13(1):159-163, 2013. Ai, B., Wang, Z., Möhwald, H. and Zhang, G. 'Plasmonic nanochemistry based on nanohole array.' ACS Nano 11(12): 12094-12102, 2017. Wang, Z., Ai, B., Wang, Y., Guan, Y., Möhwald, H. and Zhang, G. 'Hierarchical control of plasmonic nanochemistry in microreactor.' ACS Appl. Mater. Interfaces 11(38): 35429-35437, 2019. Guan, Y., Ai, B., Wang, Z., Chen, C., Zhang, W., Wang, Y. and Zhang, G. 'In situ chemical patterning technique.' Adv. Funct. Mater. 32(2): 2107945, 2022. Wang, Z., Ai, B., Zhou, Z., Guan, Y., Möhwald, H. and Zhang, G. 'Free-standing plasmonic chiral metamaterials with 3D resonance cavities.' ACS Nano 12(11): 10914-10923, 2018. Guan, Y., Wang, Z., Gu, P., Wang, Y., Zhang, W. and Zhang, G. 'An in situ SERS study of plasmonic nanochemistry based on bifunctional “hedgehog-like” arrays.' Nanoscale 11(19): 9422-9428, 2019. Grigorenko, A., Roberts, N., Dickinson, M. and Zhang, Y. 'Nanometric optical tweezers based on nanostructured substrates.' Nat. Photonics 2(6): 365-370, 2008. Kohoutek, J., Dey, D., Bonakdar, A., Gelfand, R., Sklar, A., Memis, O. G. and Mohseni, H. 'Opto-mechanical force mapping of deep subwavelength plasmonic modes.' Nano Lett. 11(8): 3378-3382, 2011. Wang, K. and Crozier, K. B. 'Plasmonic trapping with a gold nanopillar.' ChemPhysChem 13(11): 2639-2648, 2012. Fu, Q. and Sun, W. 'Mie theory for light scattering by a spherical particle in an absorbing medium.' Applied Optics 40(9): 1354-1361, 2001. Jain, P. K., Lee, K. S., El-Sayed, I. H. and El-Sayed, M. A. 'Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.' J. Phys. Chem. B 110(14): 7238-7248, 2006. Jurgens, T. G. and Taflove, A. 'Three-dimensional contour FDTD modeling of scattering from single and multiple bodies.' IEEE Trans. Antennas Propag. 41(12): 1703-1708, 1993. Xu, L. and Yuan, N. 'FDTD formulations for scattering from 3-D anisotropic magnetized plasma objects.' IEEE Antennas Wirel. Propag. Lett. 5: 335-338, 2006. Wriedt, T. 'Light scattering theories and computer codes.' J. Quant. Spectrosc. Radiat. Transf. 110(11): 833-843, 2009. Ruan, Z. and Fan, S. 'Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance.' Phys. Rev. A 85(4): 043828, 2012. He, Z., Liu, G., Zhong, Z., Zhang, G. and Cheng, A. 'A coupled ES-FEM/BEM method for fluid–structure interaction problems.' Eng Anal Bound Elem 35(1): 140-147, 2011. Rao, S., Wilton, D. and Glisson, A. 'Electromagnetic scattering by surfaces of arbitrary shape.' IEEE Trans. Antennas Propag. 30(3): 409-418, 1982. Lee, J.-F., Lee, R. and Burkholder, R. J. 'Loop star basis functions and a robust preconditioner for EFIE scattering problems.' IEEE Trans. Antennas Propag. 51(8): 1855-1863, 2003. Cools, K., Andriulli, F., De Zutter, D. and Michielssen, E. 'Accurate and conforming mixed discretization of the MFIE.' IEEE Antennas Wirel. Propag. Lett. 10: 528-531, 2011. Yla-Oijala, P. and Taskinen, M. 'Calculation of CFIE impedance matrix elements with RWG and n/spl times/RWG functions.' IEEE Trans. Antennas Propag. 51(8): 1837-1846, 2003. Liaw, J.-W., Mao, S.-Y., Luo, J.-Y., Ku, Y.-C. and Kuo, M.-K. 'Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires.' Opt. Express 29(12): 18876-18888, 2021. Ebbesen, T. W., Lezec, H. J., Ghaemi, H., Thio, T. and Wolff, P. A. 'Extraordinary optical transmission through sub-wavelength hole arrays.' Nature 391(6668): 667-669, 1998. Bethe, H. A. 'Theory of diffraction by small holes.' Phys Rev 66(7-8): 163, 1944. Grupp, D., Lezec, H., Ebbesen, T., Pellerin, K. and Thio, T. 'Crucial role of metal surface in enhanced transmission through subwavelength apertures.' Appl. Phys. Lett 77(11): 1569-1571, 2000. Barnes, W. L., Dereux, A. and Ebbesen, T. W. 'Surface plasmon subwavelength optics.' Nature 424(6950): 824-830, 2003. Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. and Ebbesen, T. 'Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film.' Phys. Rev. Lett. 92(10): 107401, 2004. Genet, C. and Ebbesen, T. W. 'Light in tiny holes.' Nanosci. Technol.: A Collection of Reviews from Nature Journals: 205-212, 2010. Brolo, A. G., Gordon, R., Leathem, B. and Kavanagh, K. L. 'Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films.' Langmuir 20(12): 4813-4815, 2004. Gordon, R., Sinton, D., Kavanagh, K. L. and Brolo, A. G. 'A new generation of sensors based on extraordinary optical transmission.' Accounts of chemical research 41(8): 1049-1057, 2008. Eftekhari, F., Escobedo, C., Ferreira, J., Duan, X., Girotto, E. M., Brolo, A. G., Gordon, R. and Sinton, D. 'Nanoholes as nanochannels: flow-through plasmonic sensing.' Anal. Chem. 81(11): 4308-4311, 2009. Ku, Y.-C., Liaw, J.-W., Mao, S.-Y. and Kuo, M.-K. 'Conversion of a Helical Surface Plasmon Polariton into a Spiral Surface Plasmon Polariton at the Outlet of a Metallic Nanohole.' ACS Omega 7(12): 10420-10428, 2022. Hill, M. T., Oei, Y.-S., Smalbrugge, B., Zhu, Y., De Vries, T., Van Veldhoven, P. J., Van Otten, F. W., Eijkemans, T. J., Turkiewicz, J. P. and De Waardt, H. 'Lasing in metallic-coated nanocavities.' Nat. Photonics 1(10): 589-594, 2007. Ding, K., Liu, Z., Yin, L., Hill, M., Marell, M., Van Veldhoven, P., Nöetzel, R. and Ning, C.-Z. 'Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection.' Phys. Rev. B 85(4): 041301, 2012. Oulton, R. F., Sorger, V. J., Genov, D., Pile, D. and Zhang, X. 'A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation.' Nat. Photonics 2(8): 496-500, 2008. Oulton, R. F., Sorger, V. J., Zentgraf, T., Ma, R.-M., Gladden, C., Dai, L., Bartal, G. and Zhang, X. 'Plasmon lasers at deep subwavelength scale.' Nature 461(7264): 629-632, 2009. Neto, P. M. and Nussenzveig, H. 'Theory of optical tweezers.' EPL 50(5): 702, 2000. Xie, C., Chen, D. and Li, Y.-q. 'Raman sorting and identification of single living micro-organisms with optical tweezers.' Opt. Lett. 30(14): 1800-1802, 2005. Peng, T., Balijepalli, A., Gupta, S. K. and LeBrun, T. 'Algorithms for on-line monitoring of micro spheres in an optical tweezers-based assembly cell.' J Comput Inf Sci Eng 7(4): 330-338, 2007. Lin, C.-L., Lee, Y.-H., Lin, C.-T., Liu, Y.-J., Hwang, J.-L., Chung, T.-T. and Baldeck, P. L. 'Multiplying optical tweezers force using a micro-lever.' Opt. Express 19(21): 20604-20609, 2011. Yang, X., Liu, Y., Oulton, R. F., Yin, X. and Zhang, X. 'Optical forces in hybrid plasmonic waveguides.' Nano Lett. 11(2): 321-328, 2011. Pang, Y. and Gordon, R. 'Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film.' Nano Lett. 11(9): 3763-3767, 2011. Liaw, J.-W., Chien, C.-W., Liu, K.-C., Ku, Y.-C. and Kuo, M.-K. '3D optical vortex trapping of plasmonic nanostructure.' Sci. Rep. 8(1): 1-8, 2018. Kummrow, M. and Helfrich, W. 'Deformation of giant lipid vesicles by electric fields.' Phys. Rev. A 44(12): 8356, 1991. Kuhlicke, A., Schietinger, S., Matyssek, C., Busch, K. and Benson, O. 'In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting.' Nano Lett. 13(5): 2041-2046, 2013. Wang, S. and Ding, T. 'Photothermal-assisted optical stretching of gold nanoparticles.' ACS Nano 13(1): 32-37, 2018. Liaw, J.-W., Liu, G., Ku, Y.-C. and Kuo, M.-K. 'Plasmon-enhanced photothermal and optomechanical deformations of a gold nanoparticle.' Nanomaterials 10(9): 1881, 2020. Fujishima, A. and Honda, K. 'Electrochemical photolysis of water at a semiconductor electrode.' Nature 238(5358): 37-38, 1972. Saito, K. and Tatsuma, T. 'Chiral plasmonic nanostructures fabricated by circularly polarized light.' Nano Lett. 18(5): 3209-3212, 2018. Morisawa, K., Ishida, T. and Tatsuma, T. 'Photoinduced chirality switching of metal-inorganic plasmonic nanostructures.' ACS Nano 14(3): 3603-3609, 2020. Lee, S. H., Nishi, H. and Tatsuma, T. 'Plasmon-induced charge separation based on a nanocomposite containing MoO 2 under visible light irradiation.' J. Mater. Chem. C 9(20): 6395-6398, 2021. Aoki, Y., Ishida, T. and Tatsuma, T. 'Plasmon-Induced Photocatalysis Based on Pt–Au Coupling with Enhanced Oxidation Abilities.' ACS Appl. Nano Mater. 5(3): 4406-4412, 2022. Klaseboer, E., Charlet, F. D., Khoo, B.-C., Sun, Q. and Chan, D. Y. 'Eliminating the fictitious frequency problem in BEM solutions of the external Helmholtz equation.' Eng Anal Bound Elem 109: 106-116. 2019. Zhang, L., Deng, A. and Wang, M. 'Study of the monopolar RWG and monopolar n× RWG basis functions for electromagnetic scattering analysis.' Eng Anal Bound Elem 35(5): 768-775, 2011. Yashiro, K. and Ohkawa, S. 'Boundary element method for electromagnetic scattering from cylinders.' IEEE Trans. Antennas Propag. 33(4): 383-389, 1985. Hohenester, U. and Trügler, A. 'MNPBEM–A Matlab toolbox for the simulation of plasmonic nanoparticles.' Comput. Phys. Commun. 183(2): 370-381, 2012. Ku, Y.-C., Kuo, M.-K. and Liaw, J.-W. 'Winding Poynting vector of light around plasmonic nanostructure.' J. Quant. Spectrosc. Radiat. Transf. 278: 108005, 2022. Johnson, P. B. and Christy, R.-W. 'Optical constants of the noble metals.' Phys. Rev. B 6(12): 4370, 1972. Tzarouchis, D. C., Ylä-Oijala, P., Ala-Nissila, T. and Sihvola, A. 'Plasmonic properties and energy flow in rounded hexahedral and octahedral nanoparticles.' JOSA B 33(12): 2626-2633, 2016. Afroozeh, A., Amiri, I., Chaudhary, K., Ali, J. and Yupapin, P. 'Analysis of optical ring resonator.' Adv. laser opt. res.: 1-16, 2014. Panaretos, A. H., Yuwen, Y. A., Werner, D. H. and Mayer, T. S. 'Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads.' Sci. Rep. 5(1): 1-12, 2015. Ahmadivand, A. and Golmohammadi, S. 'Electromagnetic plasmon propagation and coupling through gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures.' Applied Optics 53(18): 3832-3840, 2014. Alaee, R., Lehr, D., Filter, R., Lederer, F., Kley, E.-B., Rockstuhl, C. and Tünnermann, A. 'Scattering dark states in multiresonant concentric plasmonic nanorings.' ACS Photonics 2(8): 1085-1090, 2015. Hong, S., Shuford, K. L. and Park, S. 'Shape transformation of gold nanoplates and their surface plasmon characterization: triangular to hexagonal nanoplates.' Chemistry of Materials 23(8): 2011-2013, 2011. Gu, L., Sigle, W., Koch, C. T., Ögüt, B., van Aken, P. A., Talebi, N., Vogelgesang, R., Mu, J., Wen, X. and Mao, J. 'Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets.' Phys. Rev. B 83(19): 195433, 2011. Viarbitskaya, S., Cuche, A. l., Teulle, A., Sharma, J., Girard, C., Arbouet, A. and Dujardin, E. 'Plasmonic hot printing in gold nanoprisms.' ACS Photonics 2(6): 744-751, 2015. Zhang, P., Wang, T. and Gong, J. 'Mechanistic understanding of the plasmonic enhancement for solar water splitting.' Adv. Mater 27(36): 5328-5342, 2015. Zhai, Y., DuChene, J. S., Wang, Y.-C., Qiu, J., Johnston-Peck, A. C., You, B., Guo, W., DiCiaccio, B., Qian, K. and Zhao, E. W. 'Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis.' Nat. Mater. 15(8): 889-895, 2016. Nordlander, P., Oubre, C., Prodan, E., Li, K. and Stockman, M. 'Plasmon hybridization in nanoparticle dimers.' Nano Lett. 4(5): 899-903, 2004. Tsai, C.-Y., Lin, J.-W., Wu, C.-Y., Lin, P.-T., Lu, T.-W. and Lee, P.-T. 'Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.' Nano Lett. 12(3): 1648-1654, 2012. Dadosh, T., Sperling, J., Bryant, G., Breslow, R., Shegai, T., Dyshel, M., Haran, G. and Bar-Joseph, I. 'Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer.' ACS Nano 3(7): 1988-1994, 2009. 羅佳芸, '受圓偏振光照射之金奈米結構所產生的軌道角動量', 碩士論文, 國立臺灣大學應用力學研究所, 2020. Liaw, J.-W., Chen, J.-H., Chen, C.-S. and Kuo, M.-K. 'Purcell effect of nanoshell dimer on single molecule’s fluorescence.' Opt. Express 17(16): 13532-13540, 2009. 劉昆奇, '奈米金球二聚體陣列對聚苯乙烯球之電漿子媒介光力效應', 碩士論文, 國立臺灣大學應用力學研究所, 2017. Cortés, E., Xie, W., Cambiasso, J., Jermyn, A. S., Sundararaman, R., Narang, P., Schlücker, S. and Maier, S. A. 'Plasmonic hot electron transport drives nano-localized chemistry.' Nat. Commun. 8(1): 1-10, 2017. Ye, Q. and Lin, H. 'On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields.' Eur. J. Phys. 38(4): 045202, 2017. Aspnes, D. E. and Studna, A. 'Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev.' Phys. Rev. B 27(2): 985. 1983. 毛思堯, '金屬奈米導線與奈米孔洞中的表面電漿極化子特徵模態', 碩士論文, 國立臺灣大學應用力學研究所, 2021. Lu, C.-Y. and Chuang, S. L. 'A surface-emitting 3D metal-nanocavity laser: proposal and theory.' Opt. Express 19(14): 13225-13244, 2011. Shin, H., Catrysse, P. B. and Fan, S. 'Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes.' Phys. Rev. B 72(8): 085436, 2005. Lezec, H. J. and Thio, T. 'Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays.' Opt. Express 12(16): 3629-3651, 2004. Chang, S.-H., Gray, S. K. and Schatz, G. C. 'Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films.' Opt. Express 13(8): 3150-3165, 2005. Mou, Z., Zhou, C., Lv, H., Bao, R., Li, Z. and Teng, S. 'Uniform theory of plasmonic vortex generation based on nanoholes.' Nanotechnology 31(45): 455301, 2020. Permyakov, D. V., Mukhin, I. S., Shishkin, I. I., Samusev, A. K., Belov, P. A. and Kivshar, Y. S. 'Mapping electromagnetic fields near a subwavelength hole.' JETP letters 99(11): 622-626, 2014. Pacifici, D., Lezec, H. J., Sweatlock, L. A., Walters, R. J. and Atwater, H. A. 'Universal optical transmission features in periodic and quasiperiodic hole arrays.' Opt. Express 16(12): 9222-9238, 2008. Ma, H. and Kamiya, N. 'Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method.' Eng Anal Bound Elem 26(4): 329-339, 2002. Tan, F., Lv, J.-H., Jiao, Y.-Y., Liang, J.-W. and Zhou, S.-W. 'Efficient evaluation of weakly singular integrals with Duffy-distance transformation in 3D BEM.' Eng Anal Bound Elem 104: 63-70, 2019. Dunavant, D. 'High degree efficient symmetrical Gaussian quadrature rules for the triangle.' Int J Numer Methods Eng 21(6): 1129-1148, 1985. Wandzurat, S. and Xiao, H. 'Symmetric quadrature rules on a triangle.' Comput. Math. with Appl. 45(12): 1829-1840, 2003. Lee, W.-J., Kim, J.-E., Park, H. Y. and Lee, M.-H. 'Silver superlens using antisymmetric surface plasmon modes.' Opt. Express 18(6): 5459-5465, 2010. Berini, P. 'Long-range surface plasmon polaritons.' Adv. Opt. Photonics 1(3): 484-588, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85974-
dc.description.abstract表面電漿子(surface plasmon polaritons, SPPs)在奈米光學上有許多應用,不同的奈米結構將會增強表面電漿子效應,因此本文以邊界元素法(Boundary element method, BEM)與有限元素法(Finite element method, FEM)分析不同奈米結構所激發出的表面電漿子的光學現象。邊界元素法是在表面創造網格並與基本解建立積分表示式(integral representations, SIRs),可以分析整體電磁場分布,具有半解析與較少的未知係數的優點,對於分析表面電漿子在無窮域與表面物理現象是一項有利的數值方法。在結構的邊角處與曲率較大的地方會有劇烈的電漿子震盪,不只有電場能量的增強,Poynting向量的流線也會被扭曲纏繞改變傳播流向,並且在尖角處有光渦旋的行為發生,使奈米結構的表面上在特定方向上形成明顯的光化學合成,從無手徵性(chiral)結構變成帶有手徵性的結構。表面電漿子的電磁場會在物體表面上形成光曳引力,表面電位移的強度與Maxwell應力張量在正向應力的關係可以提供奈米結構的光變形,對於不同波長下的表面電漿子共振的電漿模態將能夠在局部位置上形成光拉力。 有限元素法將分析區域建立立體網格並來展現去域內的物理分量,將微分方程變成弱形式(weak from)去數值模擬,可以分析較複雜幾何形狀的電磁波問題。第二部份研究奈米孔洞的光學性質中,將利用圓柱座標下向量波函數所建構的超越方程式分析奈米單一孔洞的解析解中不同的SPPs傳播模態在無窮長的傳播特性,對於孔洞內所傳遞的模態會有顯著差距在模態的傳播長度(propagation length)上,其中以Mode-1為主要能夠通過奈米孔洞的光學訊息。從無窮長的模態分析轉換至有限厚度的奈米孔洞,本文使用有限元素套裝軟體COMSOL來分析圓形平面波激發奈米孔洞的光學特性。入射的圓形平面波所帶有的手徵性以及奈米孔洞的邊緣提供的光子動量轉換使奈米孔洞內激發出傳播模態,而從洞內帶有螺旋(helical)的Mode-1傳遞到洞口後會激發出在表面上帶有螺旋(spiral)的表面電漿子,並且可以簡化分析模型來設計表面電漿子的干涉樣式,增強金屬表面的能量分布。在週期性排列的孔洞分析中,不同的晶格長度將會改變孔洞間的表面電漿子干涉,當滿足布洛赫條件(Bloch condition)時會使光場會在特定波長侷限能量在金屬表面上,將會增強金屬吸收光子轉換成熱電子的效應,並且對應到量測穿透頻譜之低谷上。zh_TW
dc.description.abstractIn nano-optics, a variety of applications and researches of surface plasmon polaritons (SPPs) have drawn a lot of attentions recently. In this first topic of this thesis, we developed a boundary element method (BEM) based on surface integral equations (SIEs) to calculate the electromagnetic (EM) fields on the surface of plasmonic nanostructures. The surface EM fields can be used to reconstruct EM fields in the domain by using the surface integral representations (SIRs) for the study of plasmonic behaviors. Since only the physical unknowns at the discrete meshes on the boundary need to be solved, BEM has the advantages of matching the radiation condition semi-analytically and less unknowns for numerical calculation. Because plasmon effect is particularly significant at the corners of a nanostructure, the intensity of electric field is enhanced to twist the streamlines of the Poynting vector to perform a winding behavior; there are optical vortices of energy flow at these sharp corners. When a gold nanocuboid is excited by the right-handed circularly polarized plane wave, the plasmon-enhanced photochemistry reaction would occur at the sharp corners to produce a chiral nanostructure. The phenomenon also enhances the optical traction, in terms of Maxwell stress tensor, on the surface of the nanostructure to induce the optomechanical motion and optical deformation. In the second part, we analyzed the propagation characteristics of surface plasmon polarition (SPP) via nanoholes in metallic film. The propagation modes of different SPPs in an infinitely-long nanohole are solved by a transcendental equation. The Mode-1 SPP is a dominant mode though a nanohole because that its propagation loss is less than the other modes. For a finite nanohole, we used the finite element method (COMSOL) for study. We found a mode-1 spiral SPP propagating from the outlet of nanohole, which is converted from the mode-1 helical SPPs in the nanohole. Moreover, periodic nanohole array induces multiple SPPs causing interference at the surface of metal film to change the transmission power at certain specific wavelengths. Particularly when the Bloch condition is satisfied, the nanohole array confines the light energy on the surface. Consequently, there is a Bloch dip at the transmission spectrum. Additionally, the constructive interference of SPPs at the near field of metal might be useful for biosensor.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:31:11Z (GMT). No. of bitstreams: 1
U0001-1909202214562900.pdf: 7339968 bytes, checksum: 8257aafabd5b3802617a1ec7571e8269 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i Abstract iii 目錄 v 圖目錄 vii 表目錄 xii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 4 1-4 本文研究 11 第二章 理論模型 12 2-1 Maxwell方程式 12 2-2 Stratton-Chu積分表示式 14 2-3 邊界元素法 16 2-4 表面電漿子 24 2-5 Poynting 定理與散射功率以及吸收功率 27 第三章 表面電漿子與奈米結構 30 3-1 邊界元素法與Mie theory的比對 30 3-2 奈米結構的近場能量分布與能量流的扭曲 33 3-2-1 奈米方塊與長桿 33 3-2-2 奈米圓環 37 3-2-3 奈米薄片的邊緣模態分析 40 3-2-4 奈米結構與光化學 43 3-3 奈米二聚體的耦合近場增強效應 47 3-3-1 奈米球體 47 3-3-2 奈米三角片 50 3-4 表面電漿子與應力張量 54 第四章 表面電漿子與奈米孔洞 58 4-1 奈米孔洞 58 4-1-1 孔洞半徑與模態傳播長度 59 4-1-2 有限厚度下奈米孔洞的穿透頻譜 64 4-1-3 奈米多孔洞的表面干涉 67 4-2 奈米孔洞陣列 69 4-2-1 奈米陣列厚度與晶格長度之影響 69 4-2-2 布洛赫(Bloch)條件與穿透頻譜 71 4-2-3 奈米薄膜與光化學合成 77 第五章 結論與未來展望 82 Appendix 86 Appendix A: 三角形元素的高斯積分 86 Appendix B: 邊界元素的奇異積分 89 Appendix C: I-M-I波導模態計算 91 參考文獻 94
dc.language.isozh-TW
dc.title光與電漿子結構的交互作用之模擬分析zh_TW
dc.titleSimulation for Interaction of Light with Plasmonic Nanostructuresen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.author-orcid0000-0003-4683-1347
dc.contributor.advisor-orcid郭茂坤(0000-0003-0524-8227)
dc.contributor.oralexamcommittee廖駿偉(Jiunn-Woei Liaw),藍永強(Yung-Chiang Lan),賴志賢(Chih-Hsien Lai),張書維(Shu-Wei Chang)
dc.contributor.oralexamcommittee-orcid廖駿偉(0000-0003-0179-5274)
dc.subject.keyword表面電漿子,邊界元素法,有限元素法,奈米孔洞,光化學,Poynting 向量,布洛赫條件,zh_TW
dc.subject.keywordsurface plasmons,boundary element method,finite element method,nano-hole,photochemistry,Poynting vector,Bloch condition,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202203575
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2027-09-01-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1909202214562900.pdf
  此日期後於網路公開 2027-09-01
7.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved