Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智涵zh_TW
dc.contributor.advisorChih-Han Changen
dc.contributor.author劉韋岑zh_TW
dc.contributor.authorWei-Tsen Liuen
dc.date.accessioned2023-03-19T23:30:34Z-
dc.date.available2023-11-10-
dc.date.copyright2022-10-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAdmassu, B., Juen, A., Traugott, M., 2006. Earthworm primers for DNA-based gut content analysis and their cross-reactivity in a multi-species system. Soil Biology and Biochemistry 38, 1308-1315.
Aichberger, R.v., 1914. Studies on the nutrition of earthworms. Kleinwell 6, 85-88.
Aira, M., Pérez-Losada, M., Crandall, K.A., Domínguez, J., 2022. Composition, Structure and Diversity of Soil Bacterial Communities before, during and after Transit through the Gut of the Earthworm Aporrectodea caliginosa. Microorganisms 10, 1025.
Aira, M., Pérez-Losada, M., Domínguez, J., 2019. Microbiome dynamics during cast ageing in the earthworm Aporrectodea caliginosa. Applied Soil Ecology 139, 56-63.
Barois, I., Lavelle, P., 1986. Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biology and Biochemistry 18, 539-541.
Bassalik, K., 1913. Über die Verarbeitung der Oxalsäure durch Bacillus extorquens n. sp. Universität Basel.
Bhatnagar, T., 1975. Lumbricids and humification: a new aspect of the microbial incorporation of nitrogen induced by earthworm. Biodégradation et humification. Pierron, Nancy, France, 168-182.
Bouché, M., 1977. Strategies lombriciennes. Ecological Bulletins, 122-132.
Bouché, M., 1981. Contribution des lombriciens aux migrations d’éléments dans les sols tempérés. Migrations organo-minérales dans les sols tempérés, Colloques Internationaux du CNRS nº 303, 145-154.
Bouché, M., Ferriere, G., 1985. Premiere mesure ecophysiologique d'un debit d'element dans un animal endoge: le debit d'azote de Nicodrilus longus longus (Ude)(Lumbricidae, Oligochaeta) dans la prairie de Citeaux. Comptes rendus de l’Académie des sciences. Série III, Sciences de la vie 301, 789-794.
Brady, N.C., Weil, R.R., Weil, R.R., 2008. The nature and properties of soils. Prentice Hall Upper Saddle River, NJ.
Brantschen, J., Gygax, S., Mestrot, A., Frossard, A., 2020. Soil Hg contamination impact on earthworms’ gut microbiome. Applied Sciences 10, 2565.
Bray, N., Kao-Kniffin, J., Frey, S.D., Fahey, T., Wickings, K., 2019. Soil macroinvertebrate presence alters microbial community composition and activity in the rhizosphere. Frontiers in microbiology 10, 256.
Brown, G.G., Barois, I., Lavelle, P., 2000. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. European Journal of Soil Biology 36, 177-198.
Byzov, B., Tikhonov, V., Nechitailo, T.Y., Demin, V., Zvyagintsev, D., 2015. Taxonomic composition and physiological and biochemical properties of bacteria in the digestive tracts of earthworms. Eurasian Soil Science 48, 268-275.
Byzov, B.A., Khomyakov, N.V., Kharin, S.A., Kurakov, A.V., 2007. Fate of soil bacteria and fungi in the gut of earthworms. European Journal of Soil Biology 43, S149-S156.
Callahan, B.J., Mcmurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581-583.
Chang, C.-H., Chen, J.-H., 2005. Taxonomic status and intraspecific phylogeography of two sibling species of Metaphire (Oligochaeta: Megascolecidae) in Taiwan. Pedobiologia 49, 591-600.
Chang, C.-H., Lin, S.-M., Chen, J.-H., 2008. Molecular systematics and phylogeography of the gigantic earthworms of the Metaphire formosae species group (Clitellata, Megascolecidae). Molecular Phylogenetics and Evolution 49, 958-968.
Chang, C.-H., Shen, H.-P., Chen, J.-H., 2009. 台灣蚯蚓誌
Earthworm Fauna of Taiwan. 國立臺灣大學出版中心.
Chang, C.H., Szlavecz, K., Filley, T., Buyer, J.S., Bernard, M.J., Pitz, S.L., 2016. Belowground competition among invading detritivores. Ecology 97, 160-170.
Cooke, J., 1983. The effects of fungi on food selection by Lumbricus terrestris L, Earthworm ecology. Springer, pp. 365-373.
Curry, J., Byrne, D., 1992. The role of earthworms in straw decomposition and nitrogen turnover in arable land in Ireland. Soil Biology and Biochemistry 24, 1409-1412.
Curry, J.P., Schmidt, O., 2007. The feeding ecology of earthworms–a review. Pedobiologia 50, 463-477.
Dawson, R.C., 1948a. Earthworm Microbiology and the Formation of Water-stable Soil Aggregates. Soil Science Society of America Journal 12, 512-516.
Dawson, R.C., 1948b. Earthworm microbiology and the formation of water‐stable soil aggregates. Soil Science Society of America Journal 12, 512-516.
De Bernardi, A., Marini, E., Casucci, C., Tiano, L., Marcheggiani, F., Ciani, M., Comitini, F., Taskin, E., Puglisi, E., Vischetti, C., 2022. Ecotoxicological effects of a synthetic and a natural insecticide on earthworms and soil bacterial community. Environmental Advances 8, 100225.
DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et cosmochimica acta 42, 495-506.
Dickschen, F., Topp, W., 1987. Feeding activities and assimilation efficiencies of Lumbricus rubellus (Lumbricidae) on a plant-only diet. Pedobiologia (Jena) 30, 31-37.
Domínguez, J., Aira, M., Crandall, K.A., Pérez-Losada, M., 2021. Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge. Scientific Reports 11.
Drake, H.L., Horn, M.A., 2007. As the Worm Turns: The Earthworm Gut as a Transient Habitat for Soil Microbial Biomes. Annual Review of Microbiology 61, 169-189.
Edwards, C., Heath, G., 1963. The role of soil animals in breakdown of leaf material. Soil organisms, 76-84.
Edwards, C., Lofty, J., 1972. Earthworms and microorganisms, Biology of Earthworms. Springer, pp. 155-162.
Edwards, C.A., 1997. Earthworm ecology. CRC press.
Edwards, C.A., Bohlen, P.J., 1996. Biology and ecology of earthworms. Springer.
Edwards, C.A., Fletcher, K., 1988. Interactions between earthworms and microorganisms in organic-matter breakdown. Agriculture, Ecosystems & Environment 24, 235-247.
Eggleton, P., Tayasu, I., 2001. Feeding groups, lifetypes and the global ecology of termites. Ecological Research 16, 941-960.
Ehleringer, J.R., Buchmann, N., Flanagan, L.B., 2000. CARBON ISOTOPE RATIOS IN BELOWGROUND CARBON CYCLE PROCESSES. Ecological Applications 10, 412-422.
Eisenhauer, N., Milcu, A., Sabais, A.C., Bessler, H., Weigelt, A., Engels, C., Scheu, S., 2009. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biology and Biochemistry 41, 2430-2443.
Elliott, P., Knight, D., Anderson, J., 1990. Denitrification in earthworm casts and soil from pastures under different fertilizer and drainage regimes. Soil Biology and Biochemistry 22, 601-605.
Enami, Y., Okano, S., Yada, H., Nakamura, Y., 2001. Influence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLFA pattern. European Journal of Soil Biology 37, 269-272.
Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology 15, 579-590.
Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification of soil bacteria. Ecology 88, 1354-1364.
Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., Cleveland, C.C., 2009. Global patterns in belowground communities. Ecology Letters 12, 1238-1249.
Folmer, O.F., Black, M.B., Hoeh, W.R., Lutz, R.V., Vrijenhoek, R.C., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology 3 5, 294-299.
Fox, J., Weisberg, S., 2011. An R companion to applied regression. Sage. Thousand Oaks.
Freschet, G.T., Aerts, R., Cornelissen, J.H.C., 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26, 56-65.
Gómez-Brandón, M., Aira, M., Lores, M., Domínguez, J., 2011. Epigeic Earthworms Exert a Bottleneck Effect on Microbial Communities through Gut Associated Processes. PLoS ONE 6, e24786.
Gómez-Brandón, M., Aira, M., Santana, N., Pérez-Losada, M., Domínguez, J., 2020. Temporal Dynamics of Bacterial Communities in a Pilot-Scale Vermireactor Fed with Distilled Grape Marc. Microorganisms 8, 642.
Hebert, P.D., Ratnasingham, S., De Waard, J.R., 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, S96-S99.
Horn, M.A., Schramm, A., Drake, H.L., 2003. The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Applied and Environmental Microbiology 69, 1662-1669.
Horst, R., 1893. Descriptions of earthworms. Notes from the Leyden Museum 15, 316-329.
Hsu, G.C., Bernard, K.S.C.C.M., Chang, C.H., 2022. Ecological groups and isotopic niches of earthworms. Applied Soil Ecology (under review).
Hu, J., Zhao, H., Wang, Y., Yin, Z., Kang, Y., 2020. The bacterial community structures in response to the gut passage of earthworm (Eisenia fetida) feeding on cow dung and domestic sludge: Illumina high-throughput sequencing-based data analysis. Ecotoxicology and Environmental Safety 190, 110149.
Huang, B., Long, J., Li, J., Ai, Y., 2021. Effects of antimony contamination on bioaccumulation and gut bacterial community of earthworm Eisenia fetida. Journal of Hazardous Materials 416, 126110.
Huang, K., Guan, M., Chen, J., Xu, J., Xia, H., Li, Y., 2022. Biochars modify the degradation pathways of dewatered sludge by regulating active microorganisms during gut digestion of earthworms. Science of The Total Environment 828, 154496.
Khomyakov, N., Kharin, S., Nechitailo, T.Y., Golyshin, P., Kurakov, A., Byzov, B., Zvyagintsev, D., 2007. Reaction of microorganisms to the digestive fluid of earthworms. Microbiology 76, 45-54.
Knowles, M.E., Ross, D.S., Görres, J.H., 2016. Effect of the endogeic earthworm Aporrectodea tuberculata on aggregation and carbon redistribution in uninvaded forest soil columns. Soil Biology and Biochemistry 100, 192-200.
Kodama, N., Kimura, T., Yonemura, S., Kaneda, S., Ohashi, M., Ikeno, H., 2014. Automated Analysis of Two-Dimensional Positions and Body Lengths of Earthworms (Oligochaeta); MimizuTrack. PLoS ONE 9, e97986.
Korn-Wendisch, F., Kutzner, H., 1992. The family Streptomycetaceae. The Prokaryotes., 921-995.
Korobushkin, D.I., Gongalsky, K.B., Tiunov, A.V., 2014. Isotopic niche (δ13С and δ15N values) of soil macrofauna in temperate forests. Rapid Communications in Mass Spectrometry 28, 1303-1311.
Kozlovskaya, L., Zhdannikova, E., 1961. The combined activity of earthworms and the microflora in forest soils. Doklady Akademii Nauk, SSSR 139, 574-576.
Krishnaswamy, V.G., Jaffar, M.F., Sridharan, R., Ganesh, S., Kalidas, S., Palanisamy, V., Mani, K., 2021. Effect of chlorpyrifos on the earthworm Eudrilus euginae and their gut microbiome by toxicological and metagenomic analysis. World Journal of Microbiology and Biotechnology 37, 1-12.
Lüderitz, O., Freudenberg, M.A., Galanos, C., Lehmann, V., Rietschel, E.T., Shaw, D.H., 1982. Lipopolysaccharides of gram-negative bacteria, Current topics in membranes and transport. Elsevier, pp. 79-151.
Langmaid, K., 1964. Some effects of earthworm invasion in virgin podzols. Canadian Journal of Soil Science 44, 34-37.
Larsen, T., Pollierer, M.M., Holmstrup, M., D'Annibale, A., Maraldo, K., Andersen, N., Eriksen, J., 2016. Substantial nutritional contribution of bacterial amino acids to earthworms and enchytraeids: A case study from organic grasslands. Soil Biology and Biochemistry 99, 21-27.
Lavelle, P., 1981. Stratégies de reproduction chez les vers de terre.
Lavelle, P., Spain, A., 2002. Soil ecology. Springer Science & Business Media.
Leff, J.W., Jones, S.E., Prober, S.M., Barberán, A., Borer, E.T., Firn, J.L., Harpole, W.S., Hobbie, S.E., Hofmockel, K.S., Knops, J.M., 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences 112, 10967-10972.
Li, H., Yang, X.-R., Wang, J., Zhou, G.-W., Zhang, Y.-S., Lassen, S.B., Zhu, Y.-G., Su, J.-Q., 2021. Earthworm gut: An overlooked niche for anaerobic ammonium oxidation in agricultural soil. Science of The Total Environment 752, 141874.
Li, Z., Scheunemann, N., Potapov, A.M., Shi, L., Pausch, J., Scheu, S., Pollierer, M.M., 2020. Incorporation of root-derived carbon into soil microarthropods varies between cropping systems. Biology and Fertility of Soils 56, 839-851.
Liu, D., Lian, B., Wu, C., Guo, P., 2018. A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis 74, 21-29.
Lubbers, I.M., Van Groenigen, K.J., Fonte, S.J., Six, J., Brussaard, L., Van Groenigen, J.W., 2013. Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change 3, 187-194.
Ma, L., Xie, Y., Han, Z., Giesy, J.P., Zhang, X., 2017. Responses of earthworms and microbial communities in their guts to Triclosan. Chemosphere 168, 1194-1202.
Maraun, M., Erdmann, G., Fischer, B., Pollierer, M., Norton, R., Schneider, K., Scheu, S., 2011. Stable isotopes revisited: their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry 43, 877-882.
Martin, A., 1991. Short-and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo)(Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biology and Fertility of Soils 11, 234-238.
Martin, A., Lavelle, P., 1992. Effect of soil organic matter quality on its assimilation by Millsonia anomala, a tropical geophagous earthworm. Soil Biology and Biochemistry 24, 1535-1538.
McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217.
Melody, C., Griffiths, B., Dyckmans, J., Schmidt, O., 2016. Stable isotope analysis(δ13C and δ15N) of soil nematodes from four feeding groups. PeerJ 4, e2372.
Merino-Trigo, A., Sampedro, L., Rodrı́guez-Berrocal, F.J., Mato, S., de la Cadena, M.a.P., 1999. Activity and partial characterisation of xylanolytic enzymes in the earthworm Eisenia andrei fed on organic wastes. Soil Biology and Biochemistry 31, 1735-1740.
Miles, H., 1963. The occurrence of acephaline gregarines in some British earthworms. Arch. Protistenk 106, 575-582.
Minagawa, M., Wada, E., 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et cosmochimica acta 48, 1135-1140.
Normand, P., Queiroux, C., Tisa, L.S., Benson, D.R., Rouy, Z., Cruveiller, S., Médigue, C., 2007. Exploring the genomes of Frankia. Physiologia Plantarum 130, 331-343.
Nowak, E., 1975. Population density of earthworms and some elements of their production in several grassland environments.
O'brien, B., Stout, J., 1978. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology and Biochemistry 10, 309-317.
Palm, J., van Schaik, N.L.M., Schröder, B., 2013. Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems. Pedobiologia 56, 23-31.
Parle, J., 1963. Micro-organisms in the intestines of earthworms. Microbiology 31, 1-11.
Parmelee, R.W., Beare, M.H., Cheng, W., Hendrix, P.F., Rider, S.J., Crossley, D.A., Coleman, D.C., 1990. Earthworms and enchytraeids in conventional and no-tillage agroecosystems: A biocide approach to assess their role in organic matter breakdown. Biology and Fertility of Soils 10, 1-10.
Pass, D.A., Morgan, A.J., Read, D.S., Field, D., Weightman, A.J., Kille, P., 2015. The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environmental Microbiology 17, 1884-1896.
Pechenik, J.A., 2006. Biology the Invertebrates. McGraw–Hill Companies.
Perel, T., 1977. Differences in lumbricid organization connected with ecological properties. Ecological Bulletins, 56-63.
Potapov, A.A., Semenina, E.E., Korotkevich, A.Y., Kuznetsova, N.A., Tiunov, A.V., 2016. Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biology and Biochemistry 101, 20-31.
Potapov, A.M., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., Goncharov, A.A., Gongalsky, K.B., Klarner, B., Korobushkin, D.I., Liebke, D.F., Maraun, M., Mc Donnell, R.J., Pollierer, M.M., Schaefer, I., Shrubovych, J., Semenyuk, I.I., Sendra, A., Tuma, J., Tůmová, M., Vassilieva, A.B., Chen, T.W., Geisen, S., Schmidt, O., Tiunov, A.V., Scheu, S., 2022. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biological Reviews.
Potapov, A.M., Semenyuk, I.I., Tiunov, A.V., 2014. Seasonal and age-related changes in the stable isotope composition (15N/14N and 13C/12C) of millipedes and collembolans in a temperate forest soil. Pedobiologia 57, 215-222.
Price-Christenson, G.J., Johnston, M.R., Herrick, B.M., Yannarell, A.C., 2020. Influence of invasive earthworms (Amynthas spp.) on Wisconsin forest soil microbial communities and soil chemistry. Soil Biology and Biochemistry 149, 107955.
R.Core.Team, 2022. TEAM, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Online: https://www. r-project. org.
Ravindran, B., Contreras-Ramos, S., Sekaran, G., 2015. Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm Eudrilus eugeniae. Ecological Engineering 74, 394-401.
Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584.
Rosenberg, E., 2014. The family chitinophagaceae. The prokaryotes, 493-495.
Sabine, J., 1978. The nutritive value of earthworm meal, Proceedings of Conference on Utilization of Soil Organisms in Sludge Management, Syracuse, NY/еd. by R. Kalamazoo. MI, pp. 122-130.
Sampedro, L., Jeannotte, R., Whalen, J.K., 2006. Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L. Soil Biology and Biochemistry 38, 2188-2198.
Sapkota, R., Santos, S., Farias, P., Krogh, P.H., Winding, A., 2020. Insights into the earthworm gut multi-kingdom microbial communities. Science of The Total Environment 727, 138301.
Schlatter, D.C., Baugher, C.M., Kahl, K., Huggins, D.R., Johnson-Maynard, J.L., Paulitz, T.C., 2019. Bacterial communities of soil and earthworm casts of native Palouse Prairie remnants and no-till wheat cropping systems. Soil Biology and Biochemistry 139, 107625.
Schmidt, O., 1999. Intrapopulation variation in carbon and nitrogen stable isotope ratios in the earthworm Aporrectodea longa. Ecological Research 14, 317-328.
Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., 2022. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 1-16.
Svensson, B., Boström, U., Klemedtson, L., 1986. Potential for higher rates of denitrification in earthworm casts than in the surrounding soil. Biology and Fertility of Soils 2, 147-149.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research 25, 4876-4882.
Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G.F., Chater, K.F., Van Sinderen, D., 2007. Genomics of Actinobacteria : Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews 71, 495-548.
Wüst, P.K., Horn, M.A., Drake, H.L., 2011. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. The ISME Journal 5, 92-106.
Wang, H.-T., Zhu, D., Li, G., Zheng, F., Ding, J., O’Connor, P.J., Zhu, Y.-G., Xue, X.-M., 2019. Effects of arsenic on gut microbiota and its biotransformation genes in earthworm Metaphire sieboldi. Environmental Science & Technology 53, 3841-3849.
Wang, N., Wang, W., Jiang, Y., Dai, W., Li, P., Yao, D., Wang, J., Shi, Y., Cui, Z., Cao, H., Dong, Y., Wang, H., 2021. Variations in bacterial taxonomic profiles and potential functions in response to the gut transit of earthworms (Eisenia fetida) feeding on cow manure. Science of The Total Environment 787, 147392.
Wickham, H., 2016. ggplot2: elegant graphics for data analysis. springer.
Wilschut, R.A., van der Putten, W.H., Garbeva, P., Harkes, P., Konings, W., Kulkarni, P., Martens, H., Geisen, S., 2019. Root traits and belowground herbivores relate to plant–soil feedback variation among congeners. Nature Communications 10, 1-9.
Wüst, P.K., Horn, M.A., Drake, H.L., 2009. In situ hydrogen and nitrous oxide as indicators of concomitant fermentation and denitrification in the alimentary canal of the earthworm Lumbricus terrestris. Applied and Environmental Microbiology 75, 1852-1859.
Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.-H., Whitman, W.B., Euzéby, J., Amann, R., Rosselló-Móra, R., 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12, 635-645.
Yeates, G.W., Bongers, T., De Goede, R.G., Freckman, D.W., Georgieva, S., 1993. Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of nematology 25, 315.
Zeiger, E., Zhu, J., 1998. Role of zeaxanthin in blue light photoreception and the modulation of light-CO 2 interactions in guard cells. Journal of Experimental Botany, 433-442.
Zhu, G., Du, R., Du, D., Qian, J., Ye, M., 2021. Keystone taxa shared between earthworm gut and soil indigenous microbial communities collaboratively resist chlordane stress. Environmental Pollution 283, 117095.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85960-
dc.description.abstract土壤中蘊育著高度的生物多樣性;這個多樣性中的生物藉由營養階層與複雜的土壤食物網彼此相連。其中,動物與微生物在森林生態系中參與凋落物分解與養分循環。地下大型無脊椎動物—蚯蚓,其鑽土行為會改變土壤的物理性質,取食落葉、有機質及微生物可加速凋落物的分解和養分循環,經由腸道排出的糞土亦會改變土壤微生物相。不同生態群的蚯蚓,其食性與鑽土行為不同,對土壤微生物的影響也不同。然而,近年來多數關注蚯蚓對土壤微生物影響的研究,多僅專注在單一物種,且集中在少數養殖物種,只有極少數的研究將重心放在野外的蚯蚓群聚。因此,本研究以台灣北部淺山地區四個樣區的蚯蚓群聚為研究對象,探討(1)蚯蚓取食偏好與周界土壤之間;(2)基於穩定同位素劃分生態棲位的蚯蚓類群之間;(3)蚯蚓腸道中不同部位之間的微生物菌相差異。我們以穩定同位素碳13、氮15探討蚯蚓的食性差異,並進一步探討生態群分類,以微生物16S核糖體核糖核酸基因結合次世代定序分析蚯蚓腸道土壤與周界土壤微生物菌相。總計採得13種蚯蚓,δ13C、δ15N數值越低顯示主要以落葉與表層有機質為食;數值越高則以土壤以及土壤裡的有機質為食。13個物種可劃分為四個生態群,分屬四個營養棲位,其中傳統上認定的底層型蚯蚓包含兩個營養棲位,推測可能是土壤中棲息深度的變異使得獲取食物資源方式不同。腸道菌相分析的結果與生態群的劃分一致,四個不同的生態群有不同的腸道菌相,並與穩定同位素的結果呈現相同的趨勢。周界土壤與蚯蚓腸道微生物菌相的相對豐富度具有顯著差異。其中,蚯蚓腸道中的優勢菌門為變形菌門、放線菌門、厚壁菌門等。蚯蚓腸道菌相組成顯示相同樣區的蚯蚓個體較相似,而非不同樣區的相同蚯蚓物種,顯示此微生物相地點上的專一性高於宿主物種專一性。zh_TW
dc.description.abstractSoils harbor an unparalleled biological diversity that is interconnected via numerous trophic links and complex food webs. Among them, soil fauna and microbes are important players in decomposition and nutrient cycling. As ecosystem engineers, earthworms alter biological, chemical, and physical processes and play a vital role in soil functioning. Their borrowing behavior reshapes soil pores and modifies the air permeability and water infiltration; their grazing on leaf litter, soil organic matter, and microorganisms enhance decomposition rate and nutrient cycling; their ingestion of large amounts of material and casting upon the soil surface or in the soil impact microbial community composition and chemical properties. Earthworms of ecological groups have different feeding and burrowing behaviors, and are expected to affect soil microbes differently. However, most studies investigating the interaction between earthworms and microbes are focused on a couple of common, especially vermicomposting, species. Only a few studies looked into earthworm communities in natural habitats. In this study, we sampled earthworm communities in four secondary broadleaf forest sites in northern Taiwan to understand (1) how the microbial communities in the soil selectively ingested by earthworms differ from their surrounding soil habitat, (2) the differences of gut microbiomes between earthworm groups categorized based on their isotopic niches, (3) how microbial communities change after the ingested soils pass earthworm guts. We used carbon and nitrogen stable isotopes to investigate the feeding ecology of different earthworm species and ecological groups. Furthermore, we used next-generation sequencing of the 16S rRNA gene to analyze soil and earthworm gut microbiomes. A total of 13 species of earthworms were collected. δ13C and δ15N values show that, isotopically, less enriched species represent litter and surface soil feeders, while more enriched are mineral soil feeders. A total of four trophic niches representing four ecological groups are recognized. Endogeic (soil feeding) earthworms can be divided into two trophic niches, possibly reflecting resource use differences, both spatially and trophically. Earthworm gut microbiomes show a pattern similar to that of stable isotopes: the four ecological groups have distinct gut microbiomes, with anecic species and mesohumic endogeic species occupying the two ends of the spectrum. Bacterial community structures of earthworm gut were distinct from their surrounding soil. Among them, Proteobacteria, Actinobacteria, Firmicutes were the dominant bacterial phylum in the gut. The gut microbial communities in earthworms showed that the host individuals from the same location are more similar to each other than those of the same species from different locations, indicating earthworms may have regional specificity rather than host species specificity.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:30:34Z (GMT). No. of bitstreams: 1
U0001-1609202217401500.pdf: 6800094 bytes, checksum: 923c001e7c15cb5047727de39c6e7c44 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書i
致謝ii
中文摘要iii
Abstractiv
目 錄vi
圖目錄viii
表目錄x
壹、緒論1
1.1土壤生態系1
1.2土壤食物網與土壤生物功能群1
1.3蚯蚓簡介2
1.4蚯蚓生態群與功能3
1.5蚯蚓腸道構造4
1.6蚯蚓腸道微生物相4
1.7微生物作為蚯蚓的食物來源5
1.9蚯蚓促進落葉的分解與營養循環6
1.10土壤生物食性與營養位階研究工具8
1.11應用次世代定序研究蚯蚓與微生物交互作用9
1.12研究目的10
貳、材料與方法11
2.1樣區設置11
2.2落葉、土壤與蚯蚓採樣11
2.3穩定同位素分析、次世代定序分析樣本製備11
2.3.1土壤樣本11
2.3.2落葉樣本12
2.3.3蚯蚓樣本12
2.4穩定同位素分析13
2.4.1碳、氮穩定同位素13
2.4.2穩定同位素資料處理與統計分析13
2.5蚯蚓DNA條碼分析14
2.6蚯蚓腸道與周界土壤微生物菌相15
2.6.1去氧核醣核酸萃取、聚合酶連鎖反應與一次切膠純化15
2.6.2二次切膠純化與擴增子定序16
2.6.3序列資料處理與統計分析17
參、結果18
3.1碳、氮穩定同位素18
3.2蚯蚓腸道與周界土壤菌相比較19
3.3不同蚯蚓物種間腸道前、後段菌相比較21
3.4周界土壤與蚯蚓前、後腸菌相22
3.5蚯蚓腸道菌相反映蚯蚓營養位階23
肆、討論25
4.1落葉、土壤、蚯蚓組織的穩定同位素值25
4.2周界土壤與蚯蚓腸道土壤菌相組成差異27
4.3蚯蚓腸道土壤前、後腸菌相組成28
4.4周界土壤與蚯蚓腸道土壤前、後腸菌相組成結構30
4.5蚯蚓生態群與其腸道菌相31
伍、結論33
陸、參考文獻35
柒、圖與表45

圖目錄
圖1蚯蚓內部形態構造示意圖46
圖2北部次生林樣區位置47
圖3樣區內標準化採樣示意圖48
圖4用於分析穩定同位素與次世代定序分析之蚯蚓樣本示意圖49
圖5蚯蚓、土壤、落葉之δ13C、δ15N穩定同位素數值50
圖6蚯蚓、土壤、落葉之δ13C、δ15N穩定同位素數值51
圖7合併四個樣區蚯蚓δ13C、δ15N穩定同位素數值52
圖8蚯蚓生態群概念圖53
圖9周界土壤與蚯蚓腸道土壤菌相ASV稀釋曲線54
圖10周界土壤菌相α多樣性指數分析55
圖11土壤與蚯蚓腸道菌相α多樣性指數分析56
圖12蚯蚓腸道土壤與周界土壤之主座標分析(PCoA)57
圖13各樣區蚯蚓腸道土壤與周界土壤之主座標分析(PCoA)58
圖14蚯蚓腸道土壤與周界土壤優勢菌群菌門(Phylum)階層之相對豐度59
圖15蚯蚓腸道土壤與周界土壤優勢菌群菌綱(Class)階層之相對豐度60
圖16蚯蚓腸道土壤與周界土壤菌相已知最小階層之相對豐度熱點圖61
圖17蚯蚓腸道土壤前、後腸菌相α多樣性指數分析62
圖18蚯蚓腸道土壤前、後腸之主座標分析(PCoA)63
圖19不同物種蚯蚓腸道土壤前、後腸之主座標分析(PCoA)64
圖20各樣區不同物種蚯蚓腸道土壤前、後腸之主座標分析(PCoA)65
圖21蚯蚓前、後腸土壤優勢菌群菌門(Phylum)階層之相對豐度66
圖22蚯蚓前、後腸土壤優勢菌群菌綱(Class)階層之相對豐度67
圖23蚯蚓前、後腸土壤菌相已知最小階層之熱點圖68
圖24周界土壤與蚯蚓腸道土壤菌相ASV文氏圖69
圖25蚯蚓腸道土壤前、後腸菌相ASV文氏圖70
圖26僅存在於蚯蚓腸道土壤菌群已知最小階層之熱點圖71
圖27僅存在於蚯蚓腸道土壤的ASV之主座標分析(PCoA)72
圖28周界土壤與蚯蚓腸道土壤前、後腸菌相ASV文氏圖73
圖29同時存在於蚯蚓腸道土壤與周界土壤菌群已知最小階層之熱點圖74
圖30同時存在於蚯蚓腸道土壤與周界土壤的ASV之主座標分析(PCoA)75
圖31不同蚯蚓功能群腸道菌相已知最小階層之主座標分析(PCoA)76
 
表目錄
表1各樣區採集資訊與分析樣本數量77
表2落葉、0-5cm土壤、15-20cm土壤之δ13C、δ15N平均值及標準差78
表3各物種之蚯蚓δ13C、δ15N平均值及標準差79
表4各樣區之0-5cm土壤、15-20cm土壤之ASV種數80
表5蚯蚓腸道前、後腸之ASV種數81
表6各樣區之周界土壤菌相α多樣性指數分析83
表7蚯蚓腸道前、後腸菌相α多樣性指數分析84
表8比較樣區之間周界土壤之α多樣性指數(one-wayANOVA)87
表9周界土壤α多樣性指數在樣區之間兩兩成對比較(TukeyHSDTest)87
表10各樣區內周界土壤與蚯蚓腸道菌相之α多樣性指數其中位數差異(Wilcoxonranksumtest)88
表11蚯蚓腸道前、後段菌相之α多樣性指數其中位數差異(Wilcoxonsigned-ranktest)89
表12周界土壤與蚯蚓腸道共享及獨有ASV種數與所占的比例90
表13蚯蚓腸道前、後腸菌相獨有的ASV種數與所占比例91
表14周界土壤與蚯蚓腸道前、後腸菌相的ASV種數92
表15周界土壤與蚯蚓腸道前、後腸菌相的ASV比例93
-
dc.language.isozh_TW-
dc.subject微生物菌相zh_TW
dc.subject穩定同位素zh_TW
dc.subject蚯蚓zh_TW
dc.subject生態群zh_TW
dc.subject功能群zh_TW
dc.subject次世代定序zh_TW
dc.subjectmicrobiomeen
dc.subjectecological groupen
dc.subjectfunctional groupen
dc.subjectearthwormen
dc.subjectnext generation sequencingen
dc.subjectstable isotopeen
dc.title北台灣蚯蚓的功能群與其腸道土壤微生物相zh_TW
dc.titleInvestigation of functional group of earthworms and their gut soil microbiome in northern Taiwanen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.coadvisor楊姍樺zh_TW
dc.contributor.coadvisorShan-Hua Yangen
dc.contributor.oralexamcommittee許正一;吳羽婷zh_TW
dc.contributor.oralexamcommitteeZeng-Yei Hseu;Yu-Ting Wuen
dc.subject.keyword蚯蚓,功能群,生態群,穩定同位素,次世代定序,微生物菌相,zh_TW
dc.subject.keywordearthworm,functional group,ecological group,stable isotope,next generation sequencing,microbiome,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202203486-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-22-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-12-31-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf6.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved