請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85952完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃漢邦(Han-Pang Huang) | |
| dc.contributor.author | Shih-Han Chen | en |
| dc.contributor.author | 陳思翰 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:30:14Z | - |
| dc.date.copyright | 2022-10-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-21 | |
| dc.identifier.citation | [1] '3D Cad Design Software | Solidworks.' http://www.solidworks.com/ (accessed July, 2022). [2] 'Adafruit Circuitpython Pcf8591.' https://github.com/adafruit/Adafruit_CircuitPython_PCF8591 (accessed 2022). [3] 'Adafruit Pcf8591 Quad 8-Bit Adc + 8-Bit Dac - Stemma Qt / Qwiic.' https://www.adafruit.com/product/4648 (accessed 2022). [4] 'Air Pump (St45v300).' https://www.symtek.com.tw/product/pumtek-vacuum-pumps/ (accessed 2022). [5] 'Ansys.' https://www.ansys.com/zh-tw (accessed 2022). [6] 'Bullet Physics.' http://bulletphysics.org/wordpress/ (accessed 2022). [7] 'Flex Sensor Spectrasymbol 2.2″ ' https://www.taiwaniot.com.tw/product/flex-sensor-spectrasymbol-2-2-%E5%BD%8E%E6%9B%B2%E6%84%9F%E6%B8%AC%E5%99%A8-sparkfun-%E5%8E%9F%E8%A3%9D%E9%80%B2%E5%8F%A3/ (accessed 2022). [8] 'Force Sensitive Resistor 402.' https://www.taiwansensor.com.tw/product/force-sensitive-resistor-0-5/ (accessed 2022). [9] 'Matlab - Mathworks.' https://www.mathworks.com/products/matlab.html (accessed June, 2022). [10] 'Msc Software: Adams.' http://www.mscsoftware.com/product/adams (accessed June, 2022). [11] 'Pressure Transmitter | Sptw-B11r-G14-Vd-M12.' https://www.festo.com/tw/en/a/8000110/?siteUid=fox_tw&siteName=Festo+TW (accessed 2022). [12] 'Proportional Pressure Regulator | Veab-B-26-D18-F-V2-1r1.' https://www.festo.com/tw/zh/a/8153679/?siteUid=fox_tw&siteName=Festo+TW (accessed 2022). [13] 'Raspberry Pi 4.' https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed 2022). [14] 'Twincat3.' https://www.beckhoff.com/zh-tw/ (accessed 2022). [15] P. Abbasi, M. A. Nekoui, M. Zareinejad, P. Abbasi, and Z. Azhang, 'Position and Force Control of a Soft Pneumatic Actuator,' Soft Robotics, Vol. 7, No. 5, pp. 550-563, 2020. [16] S. Abondance, C. B. Teeple, and R. J. Wood, 'A Dexterous Soft Robotic Hand for Delicate in-Hand Manipulation,' IEEE Robotics and Automation Letters, Vol. 5, No. 4, pp. 5502-5509, 2020. [17] E. Acome, S. K. Mitchell, T. G. Morrissey, M. B. Emmett, C. Benjamin, M. King, M. Radakovitz, and C. Keplinger, 'Hydraulically Amplified Self-Healing Electrostatic Actuators with Muscle-Like Performance,' Science, Vol. 359, No. 6371, pp. 61-65, 2018. [18] L. A. T. Al Abeach, S. Nefti-Meziani, and S. Davis, 'Design of a Variable Stiffness Soft Dexterous Gripper,' Soft Robotics, Vol. 4, No. 3, pp. 274-284, 2017. [19] G. Alici, T. Canty, R. Mutlu, W. Hu, and V. Sencadas, 'Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers,' Soft Robot, Vol. 5, No. 1, pp. 24-35, 2018. [20] H. M. C. M. Anver, R. Mutlu, and G. Alici, '3D Printing of a Thin-Wall Soft and Monolithic Gripper Using Fused Filament Fabrication,' 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Sheraton Arabella Park Hotel, Munich, Germany, pp. 442-447, 2017. [21] L. Bai, H. Yan, J. Li, J. Shan, and P. Hou, 'Detachable Soft Actuators with Tunable Stiffness Based on Wire Jamming,' Applied Sciences, Vol. 12, No. 7, pp. 1-14, 2022. [22] A. Bicchi, M. Bavaro, G. Boccadamo, D. D. Carli, R. Filippini, G. Grioli, M. Piccigallo, A. Rosi, R. Schiavi, S. Sen, and G. Tonietti, 'Physical Human-Robot Interaction: Dependability, Safety, and Performance,' 2008 10th IEEE International Workshop on Advanced Motion Control, Centro Santa Chiara, Trento, Italy, pp. 9-14, 2008. [23] S. R. Buss, 'Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods,' IEEE Journal of Robotics and Automation, Vol. 17, pp. 1-19, 2004. [24] G. Cao, B. Chu, and Y. Liu, 'Analytical Modeling and Control of Soft Fast Pneumatic Networks Actuators,' IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Marina Bay Sands Expo and Convention Centre, Singapore, pp. 2760-2765, 2020. [25] T. Chen, R. Bilal Osama, K. Shea, and C. Daraio, 'Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots,' Proceedings of the National Academy of Sciences, Vol. 115, No. 22, pp. 5698-5702, 2018. [26] Z. Chen, P. Hou, and Z. Ye, 'Modeling of Robotic Fish Propelled by a Servo/Ipmc Hybrid Tail,' 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 8146-8151, 2018. [27] J. A. Cheney, N. Konow, K. M. Middleton, K. S. Breuer, T. J. Roberts, E. L. Giblin, and S. M. Swartz, 'Membrane Muscle Function in the Compliant Wings of Bats,' Bioinspiration & Biomimetics, Vol. 9, No. 2, pp. 1-11, 2014. [28] C. Ching-Ping and B. Hannaford, 'Measurement and Modeling of Mckibben Pneumatic Artificial Muscles,' IEEE Transactions on Robotics and Automation, Vol. 12, No. 1, pp. 90-102, 1996. [29] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, 'Biomedical Applications of Soft Robotics,' Nature Reviews Materials, Vol. 3, No. 6, pp. 143-153, 2018. [30] R. Cieślak and A. Morecki, 'Elephant Trunk Type Elastic Manipulator - a Tool for Bulk and Liquid Materials Transportation,' Robotica, Vol. 17, No. 1, pp. 11-16, 1999. [31] F. Connolly, P. Polygerinos, C. J. Walsh, and K. Bertoldi, 'Mechanical Programming of Soft Actuators by Varying Fiber Angle,' Soft Robotics, Vol. 2, No. 1, pp. 26-32, 2015. [32] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed., United States of America: Pearson Educacion, 2004. [33] R. Deimel and O. Brock, 'A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping,' International Journal of Robotics Research, Vol. 35, No. 1-3, pp. 161-185, 2016. [34] M. Doumit, A. Fahim, and M. Munro, 'Analytical Modeling and Experimental Validation of the Braided Pneumatic Muscle,' IEEE Transactions on Robotics, Vol. 25, No. 6, pp. 1282-1291, 2009. [35] S. Draw. 'Fam 3D Silicone Printing.' https://www.sandraw.com/ (accessed 2022). [36] S. Draw. 'Is 3D Printing Soft Grippers Really Possible? The Most Detailed Guide to Printing Soft Grippers!' https://www.youtube.com/watch?v=BMrmx9j6OR0&ab_channel=SanDraw (accessed 2022). [37] S. Draw. 'S300 3 Dimensions Printer.' https://www.sandraw.com/s300 (accessed 2022). [38] N. El-Atab, R. B. Mishra, F. Al-Modaf, L. Joharji, A. A. Alsharif, H. Alamoudi, M. Diaz, N. Qaiser, and M. M. Hussain, 'Soft Actuators for Soft Robotic Applications: A Review,' Advanced Intelligent Systems, Vol. 2, No. 10, pp. 1-37, 2020. [39] Y. Elsayed, A. Vincensi, C. Lekakou, T. Geng, C. M. Saaj, T. Ranzani, M. Cianchetti, and A. Menciassi, 'Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications,' Soft Robotics, Vol. 1, No. 4, pp. 255-262, 2014. [40] M. Fatahillah, N. Oh, and H. Rodrigue, 'A Novel Soft Bending Actuator Using Combined Positive and Negative Pressures,' Frontiers in Bioengineering and Biotechnology, Vol. 8, pp. 1-10, 2020. [41] T. Feix, I. M. Bullock, and A. M. Dollar, 'Analysis of Human Grasping Behavior: Object Characteristics and Grasp Type,' IEEE Transactions on Haptics, Vol. 7, No. 3, pp. 311-323, 2014. [42] T. Feix, J. Romero, H.-B. Schmiedmayer, A. M. Dollar, and D. Kragic, 'The Grasp Taxonomy of Human Grasp Types,' IEEE Transactions on Human-Machine Systems, Vol. 46, No. 1, pp. 66-77, 2016. [43] N. Feng, Q. Shi, H. Wang, J. Gong, C. Liu, and Z. Lu, 'A Soft Robotic Hand: Design, Analysis, Semg Control, and Experiment,' The International Journal of Advanced Manufacturing Technology, Vol. 97, No. 1-4, pp. 319-333, 2018. [44] J. Fras and K. Althoefer, 'Soft Biomimetic Prosthetic Hand: Design, Manufacturing and Preliminary Examination,' 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 1-6, 2018. [45] N. Fukaya, T. Asfour, R. Dillmann, and S. Toyama, 'Development of a Five-Finger Dexterous Hand without Feedback Control: The Tuat/Karlsruhe Humanoid Hand,' 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 4533-4540, 2013. [46] I. Gaiser, S. Schulz, A. Kargov, H. Klosek, A. Bierbaum, C. Pylatiuk, R. Oberle, T. Werner, T. Asfour, G. Bretthauer, and R. Dillmann, 'A New Anthropomorphic Robotic Hand,' Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea (South), pp. 418-422, 2008. [47] K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R. J. Wood, and D. F. Gruber, 'Soft Robotic Grippers for Biological Sampling on Deep Reefs,' Soft Robot, Vol. 3, No. 1, pp. 23-33, 2016. [48] K. C. Galloway, P. Polygerinos, C. J. Walsh, and R. J. Wood, 'Mechanically Programmable Bend Radius for Fiber-Reinforced Soft Actuators,' 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, pp. 1-6, 2013. [49] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, 'Control Strategies for Soft Robotic Manipulators: A Survey,' Soft Robot, Vol. 5, No. 2, pp. 149-163, 2018. [50] M. M. Ghazaly and M. I. M. Jahid, 'Characterization of Soft Bending Actuator for High Bending Angle,' International Journal of Scientific & Technology Research, Vol. 9, No. 12, pp. 26-30, 2020. [51] A. Ghosh, C. Yoon, F. Ongaro, S. Scheggi, F. M. Selaru, S. Misra, and D. H. Gracias, 'Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery,' Frontiers in Mechanical Engineering, Vol. 3, pp. 1-9, 2017. [52] Z. Gong, X. Fang, X. Chen, J. Cheng, Z. Xie, J. Liu, B. Chen, H. Yang, S. Kong, Y. Hao, T. Wang, J. Yu, and L. Wen, 'A Soft Manipulator for Efficient Delicate Grasping in Shallow Water: Modeling, Control, and Real-World Experiments,' The International Journal of Robotics Research, Vol. 40, No. 1, pp. 449-469, 2020. [53] D. Gonzalez, J. Garcia, R. M. Voyles, R. A. Nawrocki, and B. Newell, 'Characterization of 3D Printed Pneumatic Soft Actuator,' Sensors and Actuators A: Physical, Vol. 334, pp. 1-20, 2022. [54] B. Gorissen, M. De Volder, A. De Greef, and D. Reynaerts, 'Theoretical and Experimental Analysis of Pneumatic Balloon Microactuators,' Sensors and Actuators A: Physical, Vol. 168, No. 1, pp. 58-65, 2011. [55] A. Grzesiak, R. Becker, and A. Verl, 'The Bionic Handling Assistant: A Success Story of Additive Manufacturing,' Assembly Automation, Vol. 31, No. 4, pp. 329-333, 2011. [56] J. Z. Gul, B.-S. Yang, Y. J. Yang, D. E. Chang, and K. H. Choi, 'In Situ Uv Curable 3D Printing of Multi-Material Tri-Legged Soft Bot with Spider Mimicked Multi-Step Forward Dynamic Gait,' Smart Materials and Structures, Vol. 25, No. 11, pp. 1-11, 2016. [57] J. Han, Z. Hui, F. Tian, and G. Chen, 'Review on Bio-Inspired Flight Systems and Bionic Aerodynamics,' Chinese Journal of Aeronautics, Vol. 34, No. 7, pp. 170-186, 2021. [58] M. W. Hannan and I. D. Walker, 'Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots,' Journal of Robotic Systems, Vol. 20, No. 2, pp. 45-63, 2003. [59] Y. Hao, Z. Gong, Z. Xie, S. Guan, X. Yang, Z. Ren, T. Wang, and L. Wen, 'Universal Soft Pneumatic Robotic Gripper with Variable Effective Length,' 2016 35th Chinese Control Conference (CCC), Chengdu, China, pp. 6109-6114, 2016. [60] K. Hase, T. Akagi, S. Dohta, T. Shinohara, W. Kobayashi, and S. Shimooka, 'Development of Six-Legged Mobile Robot Using Tetrahedral Shaped Pneumatic Soft Actuators,' JFPS International Journal of Fluid Power System, Vol. 15, No. 1, pp. 33-39, 2022. [61] A. Hassan and M. Abomoharam, 'Modeling and Design Optimization of a Robot Gripper Mechanism,' Robotics and Computer-Integrated Manufacturing, Vol. 46, pp. 94-103, 2017. [62] S.-H. Heo, C. Kim, T.-S. Kim, and H.-S. Park, 'Human-Palm-Inspired Artificial Skin Material Enhances Operational Functionality of Hand Manipulation,' Advanced Functional Materials, Vol. 30, No. 25, pp. 1-12, 2020. [63] X. Huang, M. Ford, Z. J. Patterson, M. Zarepoor, C. Pan, and C. Majidi, 'Shape Memory Materials for Electrically-Powered Soft Machines,' Journal of Materials Chemistry B, Vol. 8, No. 21, pp. 4539-4551, 2020. [64] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida, 'Soft Manipulators and Grippers: A Review,' Frontiers in Robotics and AI, Vol. 3, pp. 1-12, 2016. [65] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, 'Soft Robotics for Chemists,' Angewandte Chemie International Edition, Vol. 50, No. 8, pp. 1890-1895, 2011. [66] L. Jing, L.-Y. Hsiao, S. Li, H. Yang, P. Ng, M. Ding, T. Van Tien, S.-P. Gao, K. Li, Y. Guo, P. Valdivia y Alvarado, and P.-Y. Chen, '2d Material-Integrated Hydrogels as Multifunctional Protective Skins for Soft Robots,' Materials Horizons, Vol. 8, pp. 1-14, 2021. [67] L. Johnson, H. A. Bruck, and S. K. Gupta, 'Design, Fabrication, and Characterization of a Soft Multi-Fingered Hand,' ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, pp. 1-10, 2016. [68] V. Kalpathy Venkiteswaran and H.-J. Su, 'A 3-Spring Pseudo-Rigid-Body Model for Soft Joints with Significant Elongation Effects,' Journal of Mechanisms and Robotics, Vol. 8, pp. 1-9, 2016. [69] N. Kastor, R. Mukherjee, E. Cohen, V. Vikas, B. Trimmer, and R. White, 'Design and Manufacturing of Tendon-Driven Soft Foam Robots,' Robotica, Vol. 38, pp. 1-18, 2019. [70] R. Katzschmann, A. Marchese, and D. Rus, Hydraulic Autonomous Soft Robotic Fish for 3D Swimming, 1st ed., Switzerland: Springer, pp. 405-420, 2014. [71] P. Kelly, Solid Mechanics Lecture Notes, 1st ed., Auckland CBD: The University of Auckland 2013. [72] S. Kim, C. Laschi, and B. Trimmer, 'Soft Robotics: A Bioinspired Evolution in Robotics,' Trends in Biotechnology, Vol. 31, No. 5, pp. 287-294, 2013. [73] Y. Kim and Y. Cha, 'Soft Pneumatic Gripper with a Tendon-Driven Soft Origami Pump,' Frontiers in Bioengineering and Biotechnology, Vol. 8, pp. 1-11, 2020. [74] Y. Kim, A. Parada German, S. Liu, and X. Zhao, 'Ferromagnetic Soft Continuum Robots,' Science Robotics, Vol. 4, No. 33, pp. 1-15, 2019. [75] G. H. Kwon, J. Y. Park, J. Y. Kim, M. L. Frisk, D. J. Beebe, and S.-H. Lee, 'Biomimetic Soft Multifunctional Miniature Aquabots,' Small, Vol. 4, No. 12, pp. 2148-2153, 2008. [76] J.-G. Lee and H. Rodrigue, 'Origami-Based Vacuum Pneumatic Artificial Muscles with Large Contraction Ratios,' Soft Robotics, Vol. 6, No. 1, pp. 109-117, 2018. [77] J. Lei, Z. Ge, P. Fan, W. Zou, T. Jiang, and L. Dong, 'Design and Manufacture of a Flexible Pneumatic Soft Gripper,' Applied Sciences, Vol. 12, No. 13, pp. 1-17, 2022. [78] A. Lendlein and S. Kelch, 'Shape-Memory Polymers,' Angewandte Chemie International Edition, Vol. 41, No. 12, pp. 2034-2057, 2002. [79] T. Li, K. Nakajima, M. Calisti, C. Laschi, and R. Pfeifer, 'Octopus-Inspired Sensorimotor Control of a Multi-Arm Soft Robot,' 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, pp. 948-955, 2012. [80] Y. Li, Y. Chen, T. Ren, Y. Hu, H. Liu, S. Lin, Y. Yang, Y. Li, and J. Zhou, 'A Dual-Mode Actuator for Soft Robotic Hand,' IEEE Robotics and Automation Letters, Vol. 6, No. 2, pp. 1144-1151, 2021. [81] Y. Li, Y. Wei, Y. Yang, and Y. Chen, 'A Novel Versatile Robotic Palm Inspired by Human Hand,' Engineering Research Express, Vol. 1, No. 1, pp. 1-12, 2019. [82] C. H. Liu, F. M. Chung, Y. Chen, C. H. Chiu, and T. L. Chen, 'Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper,' IEEE/ASME Transactions on Mechatronics, Vol. 25, No. 4, pp. 1830-1840, 2020. [83] X. Liu, J. Liu, S. Lin, and X. Zhao, 'Hydrogel Machines,' Materials Today, Vol. 36, pp. 102-124, 2020. [84] X. Liu, Y. Zhao, D. Geng, S. Chen, X. Tan, and C. Cao, 'Soft Humanoid Hands with Large Grasping Force Enabled by Flexible Hybrid Pneumatic Actuators,' Soft Robot, Vol. 8, No. 2, pp. 175-185, 2021. [85] Z. Liu, F. Wang, S. Liu, Y. Tian, and D. Zhang, 'Modeling and Analysis of Soft Pneumatic Network Bending Actuators,' IEEE/ASME Transactions on Mechatronics, Vol. 26, No. 4, pp. 2195-2203, 2021. [86] K. Ma, Z. Jiang, S. Gao, X. Cao, and F. Xu, 'Design and Analysis of Fiber-Reinforced Soft Actuators for Wearable Hand Rehabilitation Device,' IEEE Robotics and Automation Letters, Vol. 7, No. 3, pp. 6115-6122, 2022. [87] T. Maeno and T. Hino, 'Miniature Five-Fingered Robot Hand Driven by Shape Memory Alloy Actuators,' 12th IASTED International Conference on Robotics and Applications, RA 2006, pp. 174-179, 2006. [88] C. Majidi, 'Soft Robotics: A Perspective—Current Trends and Prospects for the Future,' Soft Robotics, Vol. 1, No. 1, pp. 5-11, 2013. [89] C. Majidi, R. F. Shepherd, R. K. Kramer, G. M. Whitesides, and R. J. Wood, 'Influence of Surface Traction on Soft Robot Undulation,' The International Journal of Robotics Research, Vol. 32, No. 13, pp. 1577-1584, 2013. [90] A. Miriyev, K. Stack, and H. Lipson, 'Soft Material for Soft Actuators,' Nat Commun, Vol. 8, No. 1, pp. 1-8, 2017. [91] T. Morales Bieze, A. Kruszewski, B. Carrez, and C. Duriez, 'Design, Implementation, and Control of a Deformable Manipulator Robot Based on a Compliant Spine,' The International Journal of Robotics Research, Vol. 39, No. 14, pp. 1604-1619, 2020. [92] B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. Whitesides, 'Pneumatic Networks for Soft Robotics That Actuate Rapidly,' Advanced Functional Materials, Vol. 24, No. 15, pp. 2163-2170, 2014. [93] P. Moseley, J. M. Florez, H. A. Sonar, G. Agarwal, W. Curtin, and J. Paik, 'Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method,' Advanced Engineering Materials, Vol. 18, No. 6, pp. 978-988, 2016. [94] Y. S. Narang, A. Degirmenci, J. J. Vlassak, and R. D. Howe, 'Transforming the Dynamic Response of Robotic Structures and Systems through Laminar Jamming,' IEEE Robotics and Automation Letters, Vol. 3, No. 2, pp. 688-695, 2018. [95] S. B. Niku, Introduction to Robotics: Analysis, Systems, Applications, 1st ed., Upper Saddle River, New Jersey: Prentice hall New Jersey, 2001. [96] S. Obiajulu, 'Soft Pneumatic Artificial Muscles with Low Threshold Pressures for a Cardiac Compression Device,' Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA, Vol. 6A, pp. 1-8, 2014. [97] C. D. Onal and D. Rus, 'Autonomous Undulatory Serpentine Locomotion Utilizing Body Dynamics of a Fluidic Soft Robot,' Bioinspiration & biomimetics, Vol. 8, No. 2, pp. 1-10, 2013. [98] R. Ozawa and K. Tahara, 'Grasp and Dexterous Manipulation of Multi-Fingered Robotic Hands: A Review from a Control View Point,' Advanced Robotics, Vol. 31, No. 19-20, pp. 1030-1050, 2017. [99] T. Park, K. Kim, S.-R. Oh, and Y. Cha, 'Electrohydraulic Actuator for a Soft Gripper,' Soft Robotics, Vol. 7, No. 1, pp. 68-75, 2019. [100] W. Park, S. Seo, and J. Bae, 'A Hybrid Gripper with Soft Material and Rigid Structures,' IEEE Robotics and Automation Letters, Vol. 4, No. 1, pp. 65-72, 2019. [101] B. N. Peele, T. J. Wallin, H. Zhao, and R. F. Shepherd, '3D Printing Antagonistic Systems of Artificial Muscle Using Projection Stereolithography,' Bioinspiration & Biomimetics, Vol. 10, No. 5, pp. 1-8, 2015. [102] A. Pettersson, S. Davis, J. O. Gray, T. J. Dodd, and T. Ohlsson, 'Design of a Magnetorheological Robot Gripper for Handling of Delicate Food Products with Varying Shapes,' Journal of Food Engineering, Vol. 98, No. 3, pp. 332-338, 2010. [103] P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley, and R. F. Shepherd, 'Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction,' Advanced Engineering Materials, Vol. 19, No. 12, pp. 1-22, 2017. [104] P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh, G. M. Whitesides, and C. J. Walsh, 'Towards a Soft Pneumatic Glove for Hand Rehabilitation,' 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 1512-1517, 2013. [105] P. Polygerinos, Z. Wang, J. T. B. Overvelde, K. C. Galloway, R. J. Wood, K. Bertoldi, and C. J. Walsh, 'Modeling of Soft Fiber-Reinforced Bending Actuators,' IEEE Transactions on Robotics, Vol. 31, No. 3, pp. 778-789, 2015. [106] J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd Edition ed., Boca Raton: CRC Press, 2006. [107] M. A. Roa and R. Suárez, 'Grasp Quality Measures: Review and Performance,' Autonomous Robots, Vol. 38, No. 1, pp. 65-88, 2015. [108] E. T. Roche, R. Wohlfarth, J. T. B. Overvelde, N. V. Vasilyev, F. A. Pigula, D. J. Mooney, K. Bertoldi, and C. J. Walsh, 'A Bioinspired Soft Actuated Material,' Advanced Materials, Vol. 26, No. 8, pp. 1200-1206, 2014. [109] H. Rodrigue, W. Wang, M.-W. Han, T. J. Y. Kim, and S.-H. Ahn, 'An Overview of Shape Memory Alloy-Coupled Actuators and Robots,' Soft Robotics, Vol. 4, No. 1, pp. 3-15, 2017. [110] M. Rolf, K. Neumann, J. F. Queißer, R. F. Reinhart, A. Nordmann, and J. J. Steil, 'A Multi-Level Control Architecture for the Bionic Handling Assistant,' Advanced Robotics, Vol. 29, No. 13, pp. 847-859, 2015. [111] A. Rost and S. Schädle, 'The Sls-Generated Soft Robotic Hand - an Integrated Approach Using Additive Manufacturing and Reinforcement Learning,' 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, Vol. 1, pp. 215-220, 2013. [112] D. Rus and M. T. Tolley, 'Design, Fabrication and Control of Soft Robots,' Nature, Vol. 521, No. 7553, pp. 467-475, 2015. [113] E. Sachyani Keneth, A. Kamyshny, M. Totaro, L. Beccai, and S. Magdassi, '3D Printing Materials for Soft Robotics,' Adv Mater, Vol. 33, No. 19, pp. 1-17, 2021. [114] M. A. Saleh, M. Soliman, M. A. Mousa, M. Elsamanty, and A. G. Radwan, 'Design and Implementation of Variable Inclined Air Pillow Soft Pneumatic Actuator Suitable for Bioimpedance Applications,' Sensors and Actuators A: Physical, Vol. 314, pp. 1-10, 2020. [115] M. E. M. Salem and Q. Wang, 'Dimension Investigation to Pneumatic Network Bending Soft Actuators for Soft Robotic Applications,' Engineering Research Express, Vol. 4, No. 1, pp. 1-17, 2022. [116] M. E. M. Salem, Q. Wang, and M. H. Xu, 'Application of Neural Network Fitting for Modeling the Pneumatic Networks Bending Soft Actuator Behavior,' Engineering Research Express, Vol. 4, No. 1, pp. 1-12, 2022. [117] V. R. Sastri, Other Polymers: Styrenics, Silicones, Thermoplastic Elastomers, Biopolymers, and Thermosets, 2nd ed., (Plastics in Medical Devices), Oxford William Andrew Publishing pp. 287-342, 2022. [118] S. Satheeshbabu and G. Krishnan, 'Modeling the Bending Behavior of Fiber-Reinforced Pneumatic Actuators Using a Pseudo-Rigid-Body Model,' Journal of Mechanisms and Robotics, Vol. 11, No. 3, pp. 1-9, 2019. [119] J. Schmit. 'Human Left Hand.' <https://grabcad.com/library/human-left-hand> (accessed February, 13, 2022). [120] J. Setiawan, M. Ariyanto, S. Nugroho, M. Muna, and R. Ismail, 'A Soft Exoskeleton Glove Incorporating Motor-Tendon Actuator for Hand Movements Assistance,' International Review of Automatic Control (IREACO), Vol. 13, pp. 1-11, 2020. [121] Z. Shen, X. Zhu, C. Majidi, and G. Gu, 'Cutaneous Ionogel Mechanoreceptors for Soft Machines, Physiological Sensing, and Amputee Prostheses,' Adv Mater, Vol. 33, No. 38, pp. 1-12, 2021. [122] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, 'Soft Robotic Grippers,' Advanced Materials, Vol. 30, No. 29, pp. 1-33, 2018. [123] J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea, 'Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators,' Advanced Materials, Vol. 28, No. 2, pp. 231-238, 2016. [124] N. Simaan, R. Taylor, and P. Flint, 'A Dexterous System for Laryngeal Surgery,' IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, New Orleans, LA, USA, pp. 351-357, 2004. [125] G. Singh and G. Krishnan, 'Designing Fiber-Reinforced Soft Actuators for Planar Curvilinear Shape Matching,' Soft Robot, Vol. 7, No. 1, pp. 109-121, 2020. [126] H. Su, X. Hou, X. Zhang, W. Qi, S. Cai, X. Xiong, and J. Guo, 'Pneumatic Soft Robots: Challenges and Benefits,' Actuators, Vol. 11, No. 3, pp. 1-14, 2022. [127] R. Suarez, J. Cornellà, and M. A. Roa, Grasp Quality Measures, 1st ed., Barcelona: Institute of Industrial and Control Engineering, pp. 1-20, 2006. [128] E. Sun, T. Wang, and S. Zhu, 'An Experimental Study of Bellows-Type Fluidic Soft Bending Actuators under External Water Pressure,' Smart Materials and Structures, Vol. 29, No. 8, pp. 1-12, 2020. [129] Y. Sun, Q. Zhang, and X. Chen, 'Design and Analysis of a Flexible Robotic Hand with Soft Fingers and a Changeable Palm,' Advanced Robotics, Vol. 34, No. 16, pp. 1041-1054, 2020. [130] C. Tawk, M. In Het Panhuis, G. M. Spinks, and G. Alici, 'Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles,' Soft Robot, Vol. 5, No. 6, pp. 685-694, 2018. [131] C. Tawk, G. M. Spinks, M. i. h. Panhuis, and G. Alici, '3D Printable Linear Soft Vacuum Actuators: Their Modeling, Performance Quantification and Application in Soft Robotic Systems,' IEEE/ASME Transactions on Mechatronics, Vol. 24, No. 5, pp. 2118-2129, 2019. [132] M. Tian, Y. Xiao, X. Wang, J. Chen, and W. Zhao, Design and Experimental Research of Pneumatic Soft Humanoid Robot Hand, 1st ed., (Robot Intelligence Technology and Applications 4), Switzerland: Springer, pp. 469-478, 2017. [133] S. R. Toolkit. 'Material Yeoh 2nd Order Model of Elastosil M4601.' https://softroboticstoolkit.com/book/pneunets-create-parts-and-assign-materials (accessed 2022). [134] J. H. Tsai, 'Position-Based Impedance Control for the Grasping of a Robot Hand-Arm System with Position Uncertainty,' Master, Graduate Institute of Mechanical Engineering, National Taiwan University, 2017. [135] Tuxfamily. 'Eigen Library.' <http://eigen.tuxfamily.org> (accessed 2022). [136] C. H. Tzou, 'Safely Cooperative Planning and Control of Multi-Robot Manipulators,' Master Graduate Institute of Mechanical Engineering, National Taiwan University, 2017. [137] J. Walker, T. Zidek, C. Harbel, S. Yoon, F. S. Strickland, S. Kumar, and M. Shin, 'Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators,' Actuators, Vol. 9, No. 1, pp. 1-27, 2020. [138] V. Wall, R. Deimel, and O. Brock, 'Selective Stiffening of Soft Actuators Based on Jamming,' 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, pp. 252-257, 2015. [139] H. Wang, F. J. Abu-Dakka, T. Nguyen Le, V. Kyrki, and H. Xu, 'A Novel Soft Robotic Hand Design with Human-Inspired Soft Palm: Achieving a Great Diversity of Grasps,' IEEE Robotics & Automation Magazine, Vol. 28, No. 2, pp. 37-49, 2021. [140] H. Wang, J. Ma, Z. Ren, Z. Gong, Y. Hao, T. Wang, and L. Wen, 'Fiber-Reinforced Soft Robotic Anthropomorphic Finger,' 2016 International Conference on Robotics and Automation Engineering (ICRAE), Jeju, Korea (South), pp. 1-5, 2016. [141] R. J. Webster and B. A. Jones, 'Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review,' The International Journal of Robotics Research, Vol. 29, No. 13, pp. 1661-1683, 2010. [142] T. Xu, J. Zhang, M. Salehizadeh, O. Onaizah, and E. Diller, 'Millimeter-Scale Flexible Robots with Programmable Three-Dimensional Magnetization and Motions,' Science Robotics, Vol. 4, No. 29, pp. 1-12, 2019. [143] Y. Yan, C. Cheng, M. Guan, J. Zhang, and Y. Wang, 'A Soft Robotic Gripper Based on Bioinspired Fingers,' 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Jalisco, Mexico, pp. 4570-4573, 2021. [144] C. Yang, R. Kang, D. T. Branson, L. Chen, and J. S. Dai, 'Kinematics and Statics of Eccentric Soft Bending Actuators with External Payloads,' Mechanism and Machine Theory, Vol. 139, pp. 526-541, 2019. [145] D. Yang, M. S. Verma, J.-H. So, B. Mosadegh, C. Keplinger, B. Lee, F. Khashai, E. Lossner, Z. Suo, and G. M. Whitesides, 'Buckling Pneumatic Linear Actuators Inspired by Muscle,' Advanced Materials Technologies, Vol. 1, No. 3, pp. 1-22, 2016. [146] H. K. Yap, H. Y. Ng, and C.-H. Yeow, 'High-Force Soft Printable Pneumatics for Soft Robotic Applications,' Soft Robotics, Vol. 3, No. 3, pp. 144-158, 2016. [147] Y. L. Yap, S. L. Sing, and W. Y. Yeong, 'A Review of 3D Printing Processes and Materials for Soft Robotics,' Rapid Prototyping Journal, Vol. 26, No. 8, pp. 1345-1361, 2020. [148] S. K. Yildiz, R. Mutlu, and G. Alici, 'Position Control of a Soft Prosthetic Finger with Limited Feedback Information,' 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, pp. 700-705, 2018. [149] M. Yu, W. Liu, J. Zhao, Y. Hou, X. Hong, and H. Zhang, 'Modeling and Analysis of a Composite Structure-Based Soft Pneumatic Actuators for Soft-Robotic Gripper,' Sensors, Vol. 22, No. 13, pp. 1-17, 2022. [150] S. Y. Yu, 'Vacuum-Actuated Buckling-Based Fingers,' Bachelor, Graduate Institute of Mechanical Engineering, National Taiwan University, 2021. [151] L. Zhao and S. K. Gupta, 'Design, Manufacturing, and Characterization of a Pneumatically-Actuated Soft Hand,' ASME 2018 13th International Manufacturing Science and Engineering, College Station, Texas, USA, pp. 1-12, 2018. [152] X. Zhou, C. Majidi, and O. M. O’Reilly, 'Soft Hands: An Analysis of Some Gripping Mechanisms in Soft Robot Design,' International Journal of Solids and Structures, Vol. 64-65, pp. 155-165, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85952 | - |
| dc.description.abstract | 軟性材料因彈性使得軟手指的自然地順應著外力改變彎曲角度而無需而外使用複雜的控制方式來達到相同效果,其天生的被動順應性確保了機器人與人類及環境互動的安全性。故軟性材料在在多指機器手的領域愈來愈受重視。由於目前的研究比較缺乏整合軟性致動器設計、仿人手設計、手指運動模型、坐標系建立、控制架構以及氣動與通訊系統在一起,因此本論文專注於整個軟手系統的完整性。本論文設計與分析了採用3D列印技術製作的輕量、新型的多指軟性仿人機械手。本論文也提出了軟性機械手的運動模型與座標系統的建立方式來建立靜力學與動力學的模擬環境。彎曲角度對應氣壓模型的平均誤差為5.67度。指尖力對應氣壓模型的誤差則為10 ~ 50 kPa。除此之外,藉由提出的手指運動模型本論文提供了兩種基於模型的控制架構分別為有感測器回授與無感測器回授。為了讓手掌與理論架構能順利實現,通訊系統與氣動系統也在論文中呈現。最後在模擬及實驗中呈現了軟性仿人機械手的性能、控制器架構之間的表現差異、不同抓握方式的展現以及軟性仿人機械手與人類及環境互動的情境。實驗結果展示了軟性的仿人機器人手可以抓取多種物體,無需在其上附加額外的傳感器。同時人類也可以安全地與它們互動而不會受到傷害。 | zh_TW |
| dc.description.abstract | The elasticity of soft materials enables the naturally changing bending angle according to external forces without additional, complex control algorithms, which guarantees the safety of the interaction between robot hands and humans. Therefore, multi-fingered robot hands become more and more popular in this field. Due to the lack of integration of soft actuator and anthropomorphic design, finger motion model, coordinate system establishment, control architecture, and pneumatic and communication systems in current research, this thesis focuses on the integration of the entire soft anthropomorphic hand system. In this thesis, lightweight and novel multi-fingered, soft anthropomorphic robot hands manufactured with 3D printing are developed and analyzed. The discretized coordinate frames and model of the soft actuator motion are proposed to establish the kinematics and dynamics of robot simulation environments. The average error of the model of the bending angle corresponding to air pressure is 5.67 degrees. The error of the model of the blocking force corresponding to air pressure is 10 ~ 50 kPa. Furthermore, according to the model proposed in this thesis, sensor-based and sensorless model-based control structures can be developed. Communication and pneumatic systems are also established in the thesis. Finally, the simulations and experimental results are presented, which include descriptions of the performance of the soft anthropomorphic robot hands, the difference between the two control structures, the demonstration of different grasping types, and the applications for the soft anthropomorphic robot hands. The experiments show that soft anthropomorphic robot hands can grasp various objects without attaching additional sensors to them. Humans also can safely interact with them without harm. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:30:14Z (GMT). No. of bitstreams: 1 U0001-1609202217132900.pdf: 11274171 bytes, checksum: a00ff197d2c33685e60532f84f9fce51 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 vii 摘要 ix Abstract xi List of Tables xvii List of Figures xix Chapter 1 Introduction 1 1.1 Motivation and Objectives 1 1.2 Contributions 2 1.3 Organization 4 Chapter 2 Coordinate System of the Robot Hand-Arm System 7 2.1 Introduction 7 2.2 Establishment Methods of the Soft Actuator Coordinate Frames 9 2.3 Standard DH Frame of the Robot Hand-Arm System 15 Chapter 3 Design of Soft Robot Hand 21 3.1 Introduction 21 3.2 Soft Robots 22 3.3 Pneumatic-driven Soft Actuator 30 3.3.1 Literature Review 30 3.3.2 Pneumatic Networks Actuator 43 3.3.3 Analysis of Strain, Stress, and Tip Force of the Humanoid Finger 46 3.4 Soft Anthropomorphic Hand 56 3.4.1 Literature Review 56 3.4.2 Design of the Robotic Soft Anthropomorphic Hand 59 Chapter 4 Control for Hand-Arm System 63 4.1 Introduction 63 4.2 Analytical Model of Humanoid Fingers 65 4.2.1 Literature Review 65 4.2.2 Modeling of the Humanoid Finger 69 4.3 Controller Structure 76 4.3.1 Sensorless Model-Based Hand-Arm System Controller 77 4.3.2 Sensor-Based and Model-Based Hand-Arm System Controller 79 4.4 Pneumatic System 81 4.5 Communication System 83 Chapter 5 Simulations and Experiments 85 5.1 Hardware Platform 85 5.1.1 Six-DOF Robotic Arm 85 5.1.2 NTU Robotic Hand VII 86 5.1.3 Sensors 91 5.2 Software Platform 96 5.3 Simulation and Experiment Results 101 5.3.1 Performance of Soft Anthropomorphic Hand 101 5.3.2 Testing of Different Grasping Types 113 5.3.3 Sensor-Based and Sensorless Model-Based Control 119 5.3.4 Soft Anthropomorphic Hand Interacts with Environment 126 5.3.5 Discussion 128 Chapter 6 Conclusions and Future Works 131 6.1 Conclusions 131 6.2 Future Works 132 References 135 | |
| dc.language.iso | en | |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 分析建模 | zh_TW |
| dc.subject | 機械手臂手掌系統 | zh_TW |
| dc.subject | 軟性致動器 | zh_TW |
| dc.subject | 分段恆定曲率 | zh_TW |
| dc.subject | 仿人機械手 | zh_TW |
| dc.subject | anthropomorphic hand | en |
| dc.subject | pneumatic networks actuator | en |
| dc.subject | 3D printing | en |
| dc.subject | robot hand-arm system | en |
| dc.subject | piecewise constant curvature | en |
| dc.subject | analytical modeling | en |
| dc.title | 軟性機器手掌開發及雙手掌手臂系統控制 | zh_TW |
| dc.title | Soft Robot Hands Development and Control for a Dual Robot Hand-Arm System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江茂雄(Mao-Hsiung Chiang),李祖聖(Tzuu-Hseng S. Li),林顯易(Hsien-I Lin),莊嘉揚(Jia-Yang Juang) | |
| dc.subject.keyword | 機械手臂手掌系統,軟性致動器,仿人機械手,3D列印,分段恆定曲率,分析建模, | zh_TW |
| dc.subject.keyword | robot hand-arm system,pneumatic networks actuator,anthropomorphic hand,3D printing,piecewise constant curvature,analytical modeling, | en |
| dc.relation.page | 144 | |
| dc.identifier.doi | 10.6342/NTU202203484 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-18 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1609202217132900.pdf | 11.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
