Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85944
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾宇鳳(Yufeng Tseng)
dc.contributor.authorChi-Wei Kaoen
dc.contributor.author高紀威zh_TW
dc.date.accessioned2023-03-19T23:29:54Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-21
dc.identifier.citationWarren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. Sebastian Ruder. An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747, 2016. Jen-Hao Chen and Yufeng Jane Tseng. Different molecular enumeration influences in deep learning: an example using aqueous solubility. Briefings in Bioinformatics, 22(3):bbaa092, 2021. Alex Renn, Bo-Han Su, Hsin Liu, Joseph Sun, and Yufeng J Tseng. Advances in the prediction of mouse liver microsomal studies: from machine learning to deep learning. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(1):e1479, 2021. Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging. ArXiv, abs/1508.01991, 2015. Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2014. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014. Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017. Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jurgen Bajorath, and Hong-ming Chen. Application of generative autoencoder in de novo molecular design. Molecular informatics, 37(1-2):1700123, 2018. Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph generation. In International conference on machine learning, pages 2323–2332. PMLR, 2018. Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Michał Warchoł. Mol-cyclegan: a generative model for molecular optimization. Journal of Cheminformatics, 12(1):1–18, 2020. Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using interpretable substructures. In International conference on machine learning, pages 4849–4859. PMLR, 2020. Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012. John J Irwin and Brian K Shoichet. Zinc- a free database of commercially available compounds for virtual screening. Journal of chemical information and modeling, 45(1):177–182, 2005. David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36, 1988. Harold M Hochman and James D Rodgers. Pareto optimal redistribution. The American economic review, 59(4):542–557, 1969. Arup K Ghose and Gordon M Crippen. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. modeling dispersive and hydrophobic interactions. Journal of chemical information and computer sciences, 27(1):21–35, 1987. G Richard Bickerton, Gaia V Paolini, Jer´ emy Besnard, Sorel Muresan, and Andrew L Hopkins. Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012. David Bajusz, Anita R ´ acz, and K ´ aroly H ´ eberger. Why is tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of cheminformatics, 7(1):1–13, 2015. James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017. Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. ArXiv, abs/1503.02531, 2015. Jianping Gou, B. Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A survey. ArXiv, abs/2006.05525, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85944-
dc.description.abstract電腦輔助的藥物設計已經被廣泛的使用在藥物開發。在預測藥物性質這個領域也發展得很成熟了,但電腦虛擬篩選依舊受限於資料庫的大小和多樣性。因此,建立一個能產生全新藥物的生成器勢在必行。在過去幾年,許多基於機器學習 (ML) 的生成器被提出,它們可以生成具有一個特定性質的藥物,像是具有特定生物活性的藥物。然而在現實應用場景,一個具有價值的藥物必須同時滿足多個特性。在這篇研究中,我們延伸前人的方法來同時優化多個不同的藥物特性。我們引入了經濟學中的柏雷多效率來為循環神經網路 (RNN) 生成器設計新的回饋函數。也設計了用來滿足不同優化設定的轉換函數,包含了最大化、最小化、特定數值範圍、特定閥值、藥物結構相似度等等。在驗證實驗中我們選了 QED、ALOGP、MW 三個常見的化學特性作為優化目標。實驗結果表明以柏雷多為基礎的回饋函數能同時最佳化多個目標,生成的分子相較於其他方法更好且更具有多樣性。總體來說,這個方法是一個高層次的抽象概念,可以在不更改架構的前提下套用到其他模型。我們相信這個演算法未來會是藥物開發中重要的一環。zh_TW
dc.description.abstractComputer-aided drug design has been widely used for drug discovery. In silico predictions of drug properties are currently well developed, but using entire drug databases to perform virtual screening is limited by the capacity and diversity of the database. Thus, building a generator that can develop entirely new drugs is necessary. Over the past few years, many generators based on machine learning (ML) have been proposed to produce novel drug molecules that fit a particular property, such as a specific biological activity. However, a drug must satisfy multiple properties to be valuable in real-world applications. This study extends the previous method to optimize multiple drug properties simultaneously. We introduce Pareto optimality, commonly utilized in economics, to design a new reward function for recurrent neural network (RNN) generators. Transformation functions are also designed to meet property optimization requirements, such as maximization, minimization, specific value ranges, thresholds, and structure similarity. We selected three common chemical properties as targets for validation experiments: QED, ALOGP, and MW. The experimental results show that the Pareto-based reward function can optimize multiple targets simultaneously, and the generated molecules are better for optimization and diversity than other methods. In conclusion, this method is a high-level concept that can be easily applied to any model architecture without redesign. It is believed that this algorithm will be an essential part of drug discovery.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:29:54Z (GMT). No. of bitstreams: 1
U0001-0409202214203400.pdf: 3192229 bytes, checksum: f79e0736847da85f7476787a4416a22f (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Method 5 2.1 Reinvent Model 5 2.1.1 Training Reinvent 6 2.1.2 Generation of Molecules 7 2.1.3 Reinvent Performance 8 2.2 Transformation Function 9 2.3 Reward Function 10 2.3.1 Linear Combination 11 2.3.2 Pareto optimality 12 2.3.3 Linear-based vs. Pareto-based 14 Chapter 3 Results 15 3.1 Optimization Targets 15 3.2 Proof-of-Concept Experiment 17 3.3 Linear Combination Method 17 3.4 Pareto-Based Method 20 3.5 Applications 21 3.5.1 Specific Value Ranges 21 3.5.2 Threshold 23 3.5.3 Structure Similarity 25 3.5.4 Triple Objectives 28 3.6 Diversity Control 30 Chapter 4 Discussion 32 4.1 Necessity of MOO 32 4.2 Pareto vs Linear 34 4.3 Evaluation 36 4.4 Transformation Functions 39 Chapter 5 Conclusion and Future Work 43 Bibliography 44
dc.language.isoen
dc.subject分子優化zh_TW
dc.subject藥物開發zh_TW
dc.subject藥物設計zh_TW
dc.subject柏雷多效率zh_TW
dc.subject分子最佳化zh_TW
dc.subjectPareto efficiencyen
dc.subjectMolecular de-novo designen
dc.subjectMulti-objective optimizationen
dc.subjectDrug discoveryen
dc.subjectOptimization of drug propertiesen
dc.title以柏雷多效率為核心概念的分子最佳化演算法zh_TW
dc.titleSimultaneous optimization of drug properties with Pareto efficiencyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁碧惠(Pi-Hui Liang),蘇柏翰(Bo-Han Su)
dc.subject.keyword柏雷多效率,分子最佳化,分子優化,藥物設計,藥物開發,zh_TW
dc.subject.keywordPareto efficiency,Multi-objective optimization,Molecular de-novo design,Drug discovery,Optimization of drug properties,en
dc.relation.page46
dc.identifier.doi10.6342/NTU202203129
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-0409202214203400.pdf3.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved